Разработка структурной схемы автоматизации. Функциональная схема автоматизации. Для чего она нужна? Функциональная схема автоматизация управление расходом

ФУНКЦИОНАЛЬНЫЕ СХЕМЫ СИСТЕМ АВТОМАТИЗАЦИИ (ПТК)

1. Назначение функциональных схем, методика и общие принципы их выполнения

Схемы функциональные разъясняют определенные процессы, протекающие в отдельных функциональных цепях изделия или в изделии в целом. Этими схемами пользуются для изучения принципов работы изделия, а также при их наладке, контроле, ремонте.

Функциональная схема по сравнению со структурной более подробно раскрывает функции отдельных элементов и устройств.

Функциональные схемы являются основным техническим документом, определяющим функционально-блочную структуру отдельных узлов автоматического контроля, управления и регулирования технологического процесса и оснащение объекта управления приборами и средствами автоматизации (в том числе средствами телемеханики и вычислительной техники).

Объектом управления в системах автоматизации технологических процессов является совокупность основного и вспомогательного оборудования вместе с встроенными в него запорными и регулирующими органами, а также энергии, сырья и других материалов, определяемых особенностями используемой технологии.

Задачи автоматизации решаются наиболее эффективно тогда, когда они прорабатываются в процессе разработки технологического процесса.

В этот период нередко выявляется необходимость изменения технологических схем с целью приспособления их к требованиям автоматизации, установленным на основании технико-экономического анализа.

Создание эффективных систем автоматизации предопределяет необходимость глубокого изучения технологического процесса не только проектировщиками, но и специалистами монтажных, наладочных и эксплуатационных организаций.

При разработке функциональных схем автоматизации технологических процессов необходимо решить следующее:

    получение первичной информации о состоянии технологического процесса и оборудования;

    непосредственное воздействие на технологический процесс для управления им;

    стабилизация технологических параметров процесса;

    контроль и регистрация технологических параметров процессов и состояния технологического оборудования.Указанные задачи решаются на основании анализа условий работы технологи-ческого оборудования, выявленных законов и критериев управления объектом, а также требований, предъявляемых к точности стабилизации, контроля и регистрации технологических параметров, к качеству регулирования и надежности.

Функциональные задачи автоматизации, как правило, реализуются с помощью технических средств, включающих в себя: отборные устройства, средства получения первичной информации, средства преобразования и переработки информации, средства представления и выдачи информации обслуживающему персоналу, комбинированные, комплектные и вспомогательные устройства. Результатом составления функциональных схем являются:

1) выбор методов измерения технологических параметров;

2) выбор основных технических средств автоматизации, наиболее полно отвечающих предъявляемым требованиям и условиям работы автоматизируемого объекта;

3) определение приводов исполнительных механизмов регулирующих и запорных органов технологического оборудования, управляемого автоматически или дистанционно;

4) размещение средств автоматизации на щитах, пультах, технологическом оборудовании и трубопроводах и т.п. и определение способов представления информации о состоянии технологического процесса и оборудования.

Современное развитие всех отраслей промышленности характеризуется большим разнообразием используемых в них технологических процессов.

Практически не ограничены и условия их функционирования и требования по управлению и автоматизации. Однако, базируясь на опыте проектирования систем управления и автоматизации, можно сформулировать некоторые общие принципы , которыми следует руководствоваться при разработке функциональных схем автоматизации:

1) уровень автоматизации технологического процесса в каждый период времени должен определяться не только целесообразностью внедрения определенного комплекса технических средств и достигнутым уровнем научно-технических разработок, но и перспективой модернизации и развития технологических процессов. Должна сохраняться возможность наращивания функций управления;

2) при разработке функциональных и других видов схем автоматизации и выборе технических средств должны учитываться: вид и характер технологического процесса, условия пожаро - и взрывоопасноe, агрессивность и токсичность окружающей среды и т.д.; параметры и физико-химические свойства измеряемой среды; расстояние от мест установки датчиков, вспомогательных устройств, исполнительных механизмов, приводов машин и запорных органов до пунктов управления и контроля; требуемая точность и быстродействие средств автоматизации;

3) система автоматизации технологических процессов должна строиться, как правило, на базе серийно выпускаемых средств автоматизации и вычислительной техники. Необходимо стремиться к применению однотипных средств автоматизации и предпочтительно унифицированных систем, характеризуемых простотой сочетания, взаимозаменяемостью и удобством компоновки на щитах управления. Использование однотипной аппаратуры дает значительные преимущества при монтаже, наладке, эксплуатации, обеспечении запасными частями и т. п.

4) в качестве локальных средств сбора и накопления первичной информации (автоматических датчиков), вторичных приборов, регулирующих и исполнительных устройств следует использовать преимущественно приборы и средства автоматизации Государственной системы промышленных приборов (ГСП);

5) в случаях, когда функциональные схемы автоматизации не могут быть построены на базе только серийной аппаратуры, в процессе проектирования выдаются соответствующие технические задания на разработку новых средств автоматизации;

6) выбор средств автоматизации, использующих вспомогательную энергию (электрическую, пневматическую и гидравлическую), определяется условиями пожаро- и взрывоопасное автоматизируемого объекта, агрессивности окружающей среды, требованиями к быстродействию, дальности передачи сигналов информации и управления и т.д.;

7) количество приборов, аппаратуры управления и сигнализации, устанавливаемой на оперативных щитах и пультах, должно быть ограничено. Избыток аппаратуры усложняет эксплуатацию, отвлекает внимание обслуживающего персонала от наблюдения за основными приборами, определяющими ход технологического процесса, увеличивает стоимость установки и сроки монтажных и наладочных работ. Приборы и средства автоматизации вспомогательного назначения целесообразнее размещать на отдельных щитах, располагаемых в производственных помещениях вблизи технологического оборудования.

Перечисленные принципы являются общими, но не исчерпывающими для всех случаев, которые могут встретиться в практике проектирования систем автоматизации технологических процессов. Однако для каждого конкретного случая их следует иметь в виду при реализации технического задания на автоматизацию проектируемого объекта.

2. Изображение технологического оборудования и коммуникаций

Технологическое оборудование и коммуникации при разработке функциональных схем должны изображаться, как правило, упрощенно, без указания отдельных технологических аппаратов и трубопроводов вспомогательного назначения. Однако изображенная таким образом технологическая схема должна давать ясное представление о принципе ее работы и взаимодействии со средствами автоматизации.

На технологических трубопроводах обычно показывают ту регулирующую и запорную арматуру, которая непосредственно участвует в контроле и управлении процессом, а также запорные и регулирующие органы, необходимые для определения относительного расположения мест отбора импульсов или поясняющие необходимость измерений. Технологические аппараты и трубопроводы вспомогательного назначения показывают только в случаях, когда они механически соединяются или взаимодействуют со средствами автоматизации. В отдельных случаях некоторые элементы технологического оборудования допускается изображать на функциональных схемах в виде прямоугольников с указанием наименования этих элементов или не показывать вообще.

Около датчиков, отборных, приемных и других подобных по назначению устройств следует указывать наименование того технологического оборудования, к которому они относятся.

Технологические коммуникации и трубопроводы жидкости и газа изображают условными обозначениями в соответствии с ГОСТ 2.784-70 , приведенными в табл. 7.1 , а также ГОСТ 21.408-93 СПДС.

Для более детального указания характера среды к цифровому обозначению может добавляться буквенный индекс, например вода чистая - 1ч, пар перегретый - 2п, пар насыщенный - 2н и т. п. Условные числовые обозначения трубопроводов следует проставлять через расстояния не менее 50 мм.

Детали трубопроводов, арматура, теплотехнические и санитарно-технические устройства и аппаратура показываются условными обозначениями по ГОСТ 2.785-70 и стандартам СПДС.

Условные цифровые обозначения трубопроводов для жидкостей и газов по ГОСТ 2. 784-70

Таблица 7. 1

Наименование среды, транспортируемой трубопроводом

Обозначение

Наименование среды, транспортируемой трубопроводом

Обозначение

Жидкое горючее

Горючие и взрывоопасные газы:

ацетилен

Кислород

Инертные газы:

пропилен

Кислота (окислитель)

Противопожарный трубопровод

Для жидкостей и газов, не предусмотренных табл. 7.1 , допускается использовать для обозначения другие цифры, но обязательно с необходимыми пояснениями новых условных обозначений.

Если обозначения трубопроводов на технологических чертежах не стандартизированы, то на функциональных схемах автоматизации следует применять условные обозначения, принятые в технологических схемах.

У изображения технологического оборудования, отдельных его элементов и трубопроводов следует давать соответствующие поясняющие надписи (наименование технологического оборудования, его номер, если таковой имеется, и др.), а также указывать стрелками направление потоков. Отдельные агрегаты и установки технологического оборудования можно изображать оторвано друг от друга с соответствующими указаниями на их взаимосвязь.

На трубопроводах, на которых предусматривается установка отборных устройств и регулирующих органов, указывают диаметры условных проходов.

3. Изображение средств автоматизации на функциональных схемах

Приборы, средства автоматизации, электрические устройства и элементы вычислительной техники на функциональных схемах автоматизации показываются в соответствии с ГОСТ 21.404-85 , ГОСТ 21.408-93 и отраслевыми нормативными документами. Общие требования к выполнению функциональных схем систем автоматизации изложены в ГОСТ 24.302-80 (п.п.2.1 - 2.4)

При отсутствии в стандартах необходимых изображений разрешается применять нестандартные изображения, которые следует выполнять на основании характерных признаков изображаемых устройств.

ГОСТ 21.404-85 предусматривает систему построения графических и буквенных условных обозначений по функциональным признакам, выполняемым приборами (табл. 7.2 ).

В стандарте установлены два способа построения условных обозначений: упрощенный и развернутый.

Для упрощенного способа построения достаточно основных условных обозначений, приведенных в табл. 7.2 , и буквенных обозначений, приведенных в табл. 7.3 .

Развернутый способ построения условных графических обозначений может быть выполнен путем комбинированного применения основных (табл. 7.2 и 7.3 ) и дополнительных обозначений, приведенных в табл. 7.4 и 7.5 .

Сложные приборы, выполняющие несколько функций, допускается изображать несколькими окружностями, примыкающими друг к другу.

Методика построения графических условных обозначений для упрощенного и развернутого способов является общей.

В верхней части окружности наносятся буквенные обозначения измеряемой величины и функционального признака прибора.

В нижней части окружности наносится позиционное обозначение (цифровое или буквенно-цифровое), служащее для нумерации комплекта измерения или регулирования (при упрощенном способе построения условных обозначений) или отдельных элементов комплекта (при развернутом способе построения условных обозначений).

Порядок расположения буквенных обозначений в верхней части (слева направо) должен быть следующим: обозначение основной измеряемой величины; обозначение, уточняющее (если необходимо) основную измеряемую величину; обозначение функционального признака прибора.

Функциональные признаки (если их несколько в одном приборе) также распо-лагаются в определенном порядке.

Пример построения условного обозначения прибора для измерения, регистрации и автоматического регулирования перепада давления приведен на рис. 7.1 .

При построении условных обозначений приборов следует указывать не все функ-циональные признаки прибора, а лишь те, которые используются в данной схеме. Так, при обозначении показывающих и самопишущих приборов (если функция «показание» не используется) следует писать TR вместо TIR , PR вместо PIR и т.п.

Основные условные обозначения приборов и средств автоматизации по ГОСТ 21. 404-85

Таблица 7.2

Наименование

Обозначение

1. Прибор, устанавливаемый вне щита (по месту): а) основное обозначение б) допускаемое обозначение

2. Прибор, устанавливаемый на щите, пульте:

а) основное обозначение б) допускаемое обозначение

3. Исполнительный механизм. Общее обозначение

4. Исполнительный механизм, который при прекращении подачи энергии или управляющего сигнала: а) открывает регулирующий орган б) закрывает регулирующий орган в) оставляет регулирующий орган в неизменном положении

5. Исполнительный механизм с дополнительным ручным приводом Примечание. Обозначение может применяться с любым из дополнительных знаков, характеризующих положение регулирующего органа при прекращении подачи энергии или управляющего сигнала

6. Линия связи. Общее обозначение

7. Пересечение линий связи без соединения друг с другом

8. Пересечение линий связи с соединением между собой

Отборное устройство для всех постоянно подключенных приборов изображают сплошной тонкой линией, соединяющей технологический трубопровод или аппарат с прибором (черт.1 ). При необходимости указания конкретного места расположения отборного устройства (внутри контура технологического аппарата) его обозначают кружком диаметром 2 мм (черт.2 ).

Черт. 2

Буквенные обозначения.

Основные буквенные обозначения измеряемых величин и функциональных признаков приборов должны соответствовать приведенным в табл. 7.3 .

Буквенные условные обозначения по ГОСТ 21. 404-85

Таблица 7. 3

Обозначение

Измеряемая величина

Функциональный признак прибора

Основное обозначение измеряемой величины

Дополнительное обозначение, уточняющее измеряемую величину

Отображение информации

Формирование выходного сигнала

Дополнительное значение

Сигнализация

Автоматическое регулирование, управление

Плотность

Разность, перепад

Электрическая величина

Соотношение, доля, дробь

Размер, положение, перемещение

Ручное воздействие

Верхний предел измеряемой величины

Показание

Автоматическое переключение,обегание

временная программа

Нижний предел измеряемой величины

Влажность

Давление, вакуум

Величина, характеризующая качество: состав, концентрация и т.п.

Интегрирование, суммирование по времени

Радиоактивность

Регистрация

Скорость, частота

Включение, отключение, переключение, блокировка

Температура

Несколько разнородных измеряемых величин

Вязкость

Дополнительные буквенные обозначения, отражающие функциональные признаки приборовпо ГОСТ 21. 404 - 85

Таблица 7. 4

Наименование

Обозначение

Назначение

Чувствительный элемент

Устройства, выполняющие первичное преобразование: преобразователи термоэлектрические, термопреобразователи сопротивления, датчики пирометров, сужающие устройства расходомеров и т.п.

Дистанционная передача

Приборы бесшкальные с дистанционной передачей сигнала: манометры, дифманометры,манометрические термометры

Станция управления

Приборы, имеющие переключатель для выбора вида управления и устройство для дистанционного управления

Преобразование, вычислительные функции

Для построения обозначений преобразователей сигналов и вычислительных устройств

Дополнительные обозначения, отражающие функциональные признаки преобразователей сигналов и вычислительных устройств по ГОСТ 21. 404-85

Таблица 7. 5

Наименование

Обозначение

1. Род энергии сигнала: электрический пневматический гидравлический

2. Виды форм сигнала: аналоговый дискретный

3. Операции, выполняемые вычислительным устройством: суммирование

умножение сигнала на постоянный коэффициент k

перемножение двух и более сигналов друг на друга

деление сигналов друг на друга

возведение величины сигнала f в степень n

извлечение из величины сигнала корня степени n логарифмирование

дифференцирование

интегрирование изменение знака сигнала ограничение верхнего значения сигнала

ограничение нижнего значения сигнала

4. Связь с вычислительным комплексом: передача сигнала на ЭВМ

вывод информации с ЭВМ

При построении условного обозначения сигнализатора уровня, блок сигнализации которого является бесшкальным прибором и снабжен контактным устройством и встроенными сигнальными лампами, следует писать:

a) LS - если прибор используется только для дистанционной сигнализации отклонения уровня, включения, выключения насоса, блокировок и т. д;

б) LA - если используются только сигнальные лампочки самого прибора;

в) LSA - если используются обе функции в соответствии с а) и б);

г) LC - если прибор используется для позиционного регулирования уровня.

Размеры графических условных обозначений по ГОСТ 21.404-85 приведены в табл. 7.6 . Условные графические обозначения на схемах должны выполняться линиями толщиной 0,5 - 0,6 мм .

Горизонтальная разделительная черта внутри обозначения и линии связи долж-ны выполняться линиями толщиной 0,2 - 0,3 мм .

В обоснованных случаях (например, при позиционных обозначениях, состоящих из большого числа знаков) для обозначения первичных преобразователей и приборов допускается вместо окружности применять обозначения в виде эллипса.

Примеры построения условных обозначений, устанавливаемых ГОСТ 21.404-85 , приведены в табл. 7.7 .

При использовании условных обозначений по ГОСТ 21.404-85 необходимо руководствоваться следующими правилами:

1) буква А (см. табл. 7.3 ) применяется для обозначения функции сигнализации при упрощенном способе построения условных обозначений, а также при развернутом способе, когда для сигнализации используются лампы, встроенные в сам прибор. Во всех остальных случаях для обозначения контактного устройства прибора применяется буква S и при необходимости символ ламп, гудка, звонка. Сигнализируемые предельные значения измеряемых величин следует конкретизировать добавлением букв Н и L . Эти буквы наносятся вне графического обозначения, справа от него (см. табл. 7.7, пп. 31 , 32 ). Букву S не следует применять для обозначения функции регулирования (в том числе позиционного);

2) для конкретизации измеряемой величины около изображения прибора (спра-ва от него) необходимо указывать наименование или символ измеряемой величины, например "напряжение", "ток", рН, О2 и т. д. (см. табл. 7.7, пп. 41-43 );

3) в случаях необходимости около изображения прибора допускается указывать вид радиоактивности, например альфа -, бетта - или гамма - излучение (см. табл. 7.7, п. 44 );

Рис. 7. 1 . Пример построения условного обозначения прибора для измерения, регистрации и автоматического регулирования перепада давления

Размеры графических условных обозначений приборов и средств автоматизации по ГОСТ 21. 404-85

Таблица 7.6

Примеры построения условных обозначений по ГОСТ 21.404 - 85

Таблица 7. 7

N п/п

Обозначение

Наименование

Первичный измерительный преобразователь (чувствительный элемент) для измерения температуры,установленный по месту.

Например: преобразователь термоэлектрический(термопара), термопреобразователь сопротивления,термобаллон манометрического термометра, датчик пирометра и т.п.

Прибор для измерения температуры показывающий,установленный по месту.

Например: термометр ртутный, термометр манометрический и т.п.

Прибор для измерения температуры показывающий,установленный на щите.

Например: милливольтметр, логометр, потенциометр,мост автоматический и т.п.

Прибор для измерения температуры бесшкальный с дистанционной передачей показаний, установленный по месту.

Например: термометр манометрический (или любой другой датчик температуры) бесшкальный с пневмо- или электропередачей

Прибор для измерения температуры одноточечный,регистрирующий, установленный на щите. Например: самопишущий милливольтметр, логометр,потенциометр, мост автоматический и т.п.

Прибор для измерения температуры с автоматическим обегающим устройством, регистрирующий, установленный на щите.

Например: многоточечный самопишущий потенциометр, мост автоматический и т.п.

Прибор для измерения температуры регистрирующий,регулирующий, установленный на щите. Например: любой самопишущий регулятор температуры (термометр манометрический, милливольтметр, логометр, потенциометр, мост автоматический и т.п.)

Регулятор температуры бесшкальный, установленный по месту.

Например: дилатометрический регулятор температуры

Комплект для измерения температуры регистрирующий, регулирующий, снабженный станцией управления, установленный на щите.

Например: вторичный прибор и регулирующий блок системы "Старт"

Прибор для измерения температуры бесшкальный с контактным устройством, установленный по месту.

Например: реле температурное

Байпасная панель дистанционного управления,установленная на щите

Переключатель электрических цепей измерения (управления), переключатель для газовых (воздушных) линий, установленный на щите

Прибор для измерения давления (разрежения) показывающий, установленный по месту. Например: любой показывающий манометр, дифманометр,тягомер, напоромер, вакуумметр и т.п.

Прибор для измерения перепада давления показывающий,установленный по месту. Например: дифманометр показывающий

Прибор для измерения давления (разрежения) бесшкальный с дистанционной передачей показаний, установленный по месту.

Например: манометр (дифманометр) бесшкальный с пневмо- или электропередачей

Прибор для измерения давления (разрежения) регистрирующий, установленный на щите. Например: самопишущий манометр или любой вторичный прибор для регистрации давления

Прибор для измерения давления с контактным устройством, установленный по месту. Например: реле давления

Прибор для измерения давления (разрежения) показывающий с контактным устройством, установленный по месту.

Например: электроконтактный манометр, вакуумметр и т.п.

Регулятор давления, работающий без использования постороннего источника энергии (регулятор давления прямого действия) "до себя".

Первичный измерительный преобразователь (чувствительный элемент) для измерения расхода, установленный по месту.

Например: диафрагма, сопло, труба Вентури, датчик индукционного расходомера и т.п.

Прибор для измерения расхода бесшкальный с дистанционной передачей показаний, установленный по месту.

Например: дифманометр (ротаметр), бесшкальный с пневмо- или электропередачей

Прибор для измерения соотношения расходов регистрирующий, установленный на щите. Например: любой вторичный прибор для регистрации соотношения расходов

Прибор для измерения расхода показывающий, установленный по месту.

Например: дифманометр (ротаметр), показывающий

Прибор для измерения расхода интегрирующий, установленный по месту.

Например: любой бесшкальный счетчик-расходомер с интегратором

Прибор для измерения расхода показывающий, интегрирующий, установленный по месту Например: показывающий дифманометр с интегратором

Прибор для измерения расхода интегрирующий, с устройством для выдачи сигнала после прохождения заданного количества вещества, установленный по месту. Например: счетчик-дозатор

Первичный измерительный преобразователь (чувствительный элемент) для измерения уровня, установленный по месту.

Например: датчик электрического или емкостного уровнемера

Прибор для измерения уровня показывающий, установленный по месту.

Например: манометр (дифманометр), используемый для измерения уровня

Прибор для измерения уровня с контактным устройством, установленный по месту.

Например: реле уровня, используемое для блокировки и сигнализации верхнего уровня

Прибор для измерения уровня бесшкальный, с дистанционной передачей показаний, становленный по месту. Например: уровнемер бесшкальный с пневмо- или электропередачей

Прибор для измерения уровня бесшкальный, регулирующий, с контактным устройством, установленный по месту.

Например: электрический регулятор-сигнализатор уровня. Буква Н в данном примере означает блокировку по верхнему уровню

Прибор для измерения уровня показывающий, с контактным устройством, установленный на щите.

Например: вторичный показывающий прибор с сигнальным устройством. Буквы Н и L означают сигнализацию верхнего и нижнего уровней

Прибор для измерения плотности раствора бесшкальный, с дистанционной передачей показаний, установленный по месту.

Например: датчик плотномера с пневмо- или электро- передачей

Прибор для измерения размеров показывающий, установленный по месту.

Например: показывающий прибор для измерения толщины стальной ленты

Прибор для измерения любой электрической величины показывающий, установленный по месту.

Например:

Напряжение *

Сила тока *

Мощность *

___________ * Надписи, расшифровывающие конкретную измеряемую электрическую величину, располагаются либо рядом с прибором, либо в виде таблицы на поле чертежа.

Прибор для управления процессом по временной программе, установленный на щите. Например: командный электропневматический прибор (КЭП), многоцепное реле времени

Прибор для измерения влажности регистрирующий, установленный на щите.

Например: вторичный прибор влагомера

Первичный измерительный преобразователь (чувствительный элемент) для измерения качества продукта, установленный по месту.

Например: датчик рН-метра

Прибор для измерения качества продукта показывающий, установленный по месту.

Например: газоанализатор показывающий для контроля содержания кислорода в дымовых газах

Прибор для измерения качества продукта регистрирующий, регулирующий, установленный на щите.

Например: вторичный самопишущий прибор регулятора концентрации серной кислоты в растворе

Прибор для измерения радиоактивности показывающий, с контактным устройством, установленный по месту. Например: прибор для показания и сигнализации предельно допустимых концентраций a- и b - лучей

Прибор для измерения скорости вращения,привода регистрирующий, установленный на щите.

Например: вторичный прибор тахогенератора

Прибор для измерения нескольких разнородных величин регистрирующий, установленный по месту. Например: самопишущий дифманометр-расходомер с дополнительной записью давления. Надпись,расшифровывающая измеряемые величины,наносится справа от прибора

Прибор для измерения вязкости раствора показывающий, установленный по месту. Например: вискозиметр показывающий

Прибор для измерения массы продукта показывающий, с контактным устройством, установленный по месту.Например: устройство электронно-тензометрическое, сигнализирующее

Прибор для контроля погасания факела в печи бесшкальный, с контактным устройством, установленный на щите.Например: вторичный прибор запально-защитного устройства. Применение резервной буквы В должно быть оговорено на поле схемы

Преобразователь сигнала, установленный на щите. Входной сигнал электрический, выходной сигнал тоже электрический.Например: преобразователь измерительный,служащий для преобразования т.э.д.с. термометра термоэлектрического в сигнал постоянного тока

Преобразователь сигнала, установленный по месту. Входной сигнал пневматический, выходной - электрический

Вычислительное устройство, выполняющеефункцию умножения.Например: множитель на постоянный коэффициент К

Пусковая аппаратура для управления электродвигателем (включение, выключение насоса; открытие, закрытие задвижки и т.д.).Например: магнитный пускатель, контактор и т.п. Применение резервной буквы N должно быть оговорено на поле схемы

Аппаратура, предназначенная для ручного дистанционного управления (включение, выключение двигателя; открытие, закрытие запорного органа, изменение задания регулятору), установленная на щите.Например: кнопка, ключ управления, задатчик

Аппаратура, предназначенная для ручного дистанционного управления, снабженная устройством для сигнализации,установленная на щите.Например: кнопка со встроенной лампочкой,ключ управления с подсветкой и т.п.

4) буква U может быть использована для обозначения прибора, измеряющего несколько разнородных величин. Подробная расшифровка измеряемых величин должна быть приведена около прибора или на поле чертежа (см. табл. 7.7, п. 46 );

5) для обозначения величин, не предусмотренных данным стандартом, могут быть использованы резервные буквы. Многократно применяемые величины следует обозначать одной и той же резервной буквой.

Для одноразового или редкого применения может быть использована буква X. При необходимости применения резервных буквенных обозначений они должны быть расшифрованы на схеме. Не допускается в одной и той же документации применение одной резервной буквы для обозначения различных величин;

6) для обозначения дополнительных значений прописные буквы D, F, Q допускается заменять строчными d, f, q ;

7) в отдельных случаях, когда позиционное обозначение прибора не помещается в окружность, допускается нанесение его вне окружности;

8) буква Е (см. табл. 7.7 ) применяется для обозначения чувствительных элементов, т. е. устройств, выполняющих первичное преобразование. Примерами первичных преобразователей являются термометры термоэлектрические (термопары), термометры сопротивления, датчики пирометров, сужающие устройства расходомеров, датчики индукционных расходомеров и т. п.;

9) буква Т означает промежуточное преобразование - дистанционную передачу сигнала. Ее рекомендуется применять для обозначения приборов с дистанционной передачей показаний, например бесшкальных манометров (дифманометров), манометрических термометров с дистанционной передачей и т.п.

10) буква К применяется для обозначения приборов, имеющих станцию управления, т. е. переключатель выбора вида управления (автоматическое, ручное);

12) порядок построения условных обозначений с применением дополнительных букв следующий: на первом месте ставится буква, обозначающая измеряемую величину, на втором - одна из дополнительных букв Е, Т, К или Y . Например, первичные измерительные преобразователи температуры (термометры термоэлектрические, термометры сопротивления и др.) обозначаются ТЕ , первичные измерительные преобразователи расхода (сужающие устройства расходомеров, датчики индукционных расходомеров и др.) - ; бесшкальные манометры с дистанционной передачей показаний - РТ ; бесшкальные расходомеры с дистанционной передачей - и т. д.;

13) при применении обозначений из табл. 7. 5 надписи, расшифровывающие вид преобразования или операции, выполняемые вычислительным устройством, наносятся справа от графического изображения прибора;

14) в обоснованных случаях во избежание неправильного понимания схемы допускается вместо условных обозначений приводить полное наименование преобразуемых сигналов. Также рекомендуется обозначать некоторые редко применяемые или специфические сигналы, например кодовый, время-импульсный, число-импульсный и т. д.;

15) при построении обозначений комплектов средств автоматизации первая буква в обозначении каждого прибора, входящего в комплект, является наименованием измеряемой комплектом величины. Например, в комплекте для измерения регулирования температуры первичный измерительный преобразователь следует обозначать ТЕ , вторичный регистрирующий прибор - TR , регулирующий блок - ТС и т. п.

При построении условных обозначений по ГОСТ 21.404-85 предусматриваются следующие исключения:

1) все устройства, выполненные в виде отдельных блоков и предназначенные для ручных операций, должны иметь на первом месте в обозначении букву Н независимо от того, в состав какого измерительного комплекта они входят, например, переключатели электрических цепей измерения (управления), переключатели газовых (воздушных) линий обозначаются HS , байпасные панели дистанционного управления - НС, кнопки (ключи) для дистанционного управления, задатчики - Н и т.п.;

2) при обозначении комплекта, предназначенного для измерения нескольких разнородных величин, первичные измерительные преобразователи (датчики) следует обозначать в соответствии с измеряемой величиной, вторичный прибор - UP ;

3) в отдельных случаях при построении обозначений комплектов, предназначенных для измерения качества косвенным методом, первая буква в обозначении датчика может отличаться от первой буквы в обозначении вторичного прибора (например, для измерения качества продукта пользуются методом температурной депрессии). Датчиками температуры при этом являются термометры сопротивления, вторичным прибором - автоматический мост. Обозначение такого комплекта при развернутом способе будет слетим: датчики - ТЕ , вторичный прибор - QR (см. табл.7.7, п. 43 ).

Щиты, стативы, пульты управления на функциональных схемах изображаются условно в виде прямоугольных произвольных размеров, достаточных для нанесения графических условных обозначений устанавливаемых на них приборов, средств автоматизации, аппаратуры управления и сигнализации по ГОСТ 21.404-85 .

Комплектные устройства (машины централизованного контроля, управляющие машины, полукомплекты телемеханики и др.) обозначаются на функциональных схемах также в виде прямоугольников.

Функциональные связи между технологическим оборудованием и установленными на нем первичными преобразователями, а также со средствами автоматизации, установленными на щитах и пультах, на схемах показываются тонкими сплошными линиями. Каждая связь обозначается одной линией независимо от фактического числа проводов или труб, осуществляющих эту связь. К условным обозначениям приборов и средств автоматизации для входных и выходных сигналов линии связи допускается подводить с любой стороны, в том числе сбоку и под углом. Линии связи должны наноситься на чертежи по кратчайшему расстоянию и проводиться с минимальным числом пересечений.

Допускается пересечение линиями связи изображений технологического оборудования и коммуникаций. Пересечение линиями связи условных обозначений приборов и средств автоматизации не допускается.

Функциональные части и связи между ними на схеме изображают в виде условных графических обозначений, установленных соответствующими ГОСТами ЕСКД. Отдельные функциональные части допускается изображать в виде прямоугольников. Графическое построение схемы должно давать наиболее наглядное представление о последовательности процессов, иллюстрируемых схемой. Элементы и устройства на схеме могут быть изображены совмещенным или разнесенным способом.

Для каждой функциональной группы, устройства, элемента должны быть указаны обозначение, наименование и тип. Наименование не указывают, если функциональная группа или элемент изображены в виде условного графического обозначения.

Функциональные схемы применяются, как правило, совместно с принципиальными, поэтому буквенно-цифровые обозначения элементов и устройств на этих документах должны быть одинаковыми. Перечень элементов в этом случае для функциональной схемы не разрабатывают, так как пользуются данными принципиальной электрической схемы. Если функциональная схема разрабатывается самостоятельно (без принципиальной схемы), буквенно-цифровые обозначения присваивают элементам и устройствам по общим правилам, выполняют перечень элементов, в котором для каждого элемента и устройства указывают тип и документ (ГОСТ, ТУ и др.), на основании которого они применены.

4. Позиционные обозначения приборов и средств автоматизации)

Всем приборам и средствам автоматизации, изображенным на функциональных схемах, присваиваются позиционные обозначения (позиции), сохраняющиеся во всех материалах проекта.

На стадии проекта позиционные обозначения выполняют арабскими цифрами в соответствии с нумерацией и заявочной ведомостью приборов, средств автоматизации и электроаппаратуры.

На стадии рабочей документации при одностадийном проектировании позиционные обозначения приборов и средств автоматизации образуются из двух частей: обозначение арабскими цифрами номера функциональной группы и строчными буквами русского алфавита номеров приборов и средств автоматизации в данной функциональной группе.

Буквенные обозначения присваиваются каждому элементу функциональной группы в порядке алфавита в зависимости от последовательности прохождения сигнала - от устройств получения информации к устройствам воздействия на управляемый процесс (например, приемное устройство - датчик, вторичный преобразователь - задатчик - регулятор - указатель положения - исполнительный механизм, регулирующий орган).

Позиционные обозначения отдельных приборов и средств автоматизации, таких как регулятор прямого действия, манометр, термометр и др., состоят только из порядкового номера.

Позиционные обозначения должны присваиваться всем элементам функциональных групп, за исключением:

а) отборных устройств;

б) приборов из средств автоматизации, поставляемых комплектно с технологическим оборудованием;

в) регулирующих органов и исполнительных механизмов, входящих в данную систему автоматического управления, но заказываемых и устанавливаемых в технологических частях проекта.

Обозначения на функциональных схемах электроаппаратуры на стадии рабочей документации или при одностадийном проектировании должны соответствовать обозначениям, принятым в принципиальных электрических схемах.

При определении границ каждой функциональной группы следует учитывать следующее обстоятельство: если какой-либо прибор или регулятор связан с несколькими датчиками или получает дополнительные воздействия под другим параметром (например, корректирующий сигнал), то все элементы схемы, осуществляющие дополнительные функции, относятся к той функциональной группе, на которую они оказывают воздействие.

Регулятор соотношения, в частности, входит в состав той функциональной группы, на которую оказывается ведущее воздействие по независимому параметру. То же относится и к прямому цифровому управлению, где входным цепям контура регулирования присваивается одна и та же позиция.

В системах централизованного контроля с применением вычислительной техники, в схемах телеизмерения, в сложных схемах автоматического управления с общими для разных функциональных групп устройствами все общие элементы выносятся в самостоятельные функциональные группы.

Позиционные обозначения в функциональных схемах проставляют рядом с условными графическими обозначениями приборов и средств автоматизации (по возможности с правой стороны или над ними).

5. Требования к оформлению и примеры выполнения функциональных схем

Функциональная схема выполняется в соответствии с ГОСТ 21.404-85 , ГОСТ 21.408-93 и другими нормативными документами, в виде чертежа, на котором схематически условными изображениями показывают: технологическое оборудование, коммуникации, органы управления и средства автоматизации с указанием связей между технологическим оборудованием и средствами автоматизации, а также связей между отдельными функциональными блоками и элементами автоматики.

Функциональные схемы автоматизации могут разрабатываться с большей или меньшей степенью детализации. Однако объем информации, представленный на схеме, должен обеспечить полное представление о принятых основных решениях по автоматизации данного технологического процесса и возможность составления на стадии проекта заявочных ведомостей приборов и средств автоматизации, трубопроводной арматуры, щитов и пультов, основных монтажных материалов и изделий, а на стадии рабочего проекта - всего комплекса проектных материалов, предусмотренных в составе проекта.

Функциональную схему автоматизации выполняют, как правило, на одном листе, на котором изображают средства автоматизации и аппаратуру всех систем контроля, регулирования, управления и сигнализации, относящуюся к данной технологической установке. Вспомогательные устройства, такие как редукторы и фильтры для воздуха, источники питания, реле, автоматы, выключатели и предохранители в цепях питания, соединительные коробки и другие устройства и монтажные элементы, на функциональных схемах не показывают.

Для технологических процессов с большим объемом автоматизации функциональные схемы могут быть выполнены раздельно по видам технологического контроля и управления. Например, отдельно выполняются схемы автоматического управления, контроля и сигнализации и т.п.

Рис. 7.2 . Пример выполнения схемы автоматизации развернутым способом

Функциональные схемы автоматизации могут быть выполнены двумя способами: развернутым, с условным изображением щитов и пультов управления в виде прямоугольников (как правило, в нижней части чертежа), в которых показываются устанавливаемые на них средства автоматизации; упрощенным, с изображением средств автоматизации на технологических схемах вблизи отборных и приемных устройств, без построения прямоугольников, условно изображающих щиты, пульты, пункты контроля и управления.

При выполнении схем по первому способу на них показываются все приборы и средства автоматизации, входящие в состав функционального блока или группы, и место их установки. Преимуществом этого способа является большая наглядность, в значительной степени облегчающая чтение схемы и работу с проектными материалами.

Пример выполнения функциональных схем по первому способу дан на рис.7.2 .

Технологическое оборудование в этом случае изображают в верхней части схемы.

При построении схем по второму способу, хотя он и дает только общее представление о принятых решениях по автоматизации объекта, достигается сокращение объема документации. Чтение функциональных схем, выполненных таким образом, затруднено, не отображают организацию пунктов контроля и управления объектом. Примеры выполнения функциональных схем по второму способу даны на рис. 7.3 .

Рис. 7.3 . Пример выполнения схемы автоматизации упрощенным способом

Как уже указывалось, приборы и средства автоматизации при выполнении функциональных схем как первым, так и вторым способом могут быть изображены развернуто, упрощенно или комбинированно.

При развернутом изображении на схемах показывают: отборные устройства, датчики, преобразователи, вторичные приборы, исполнительные механизмы, регулирующие и запорные органы, аппаратуру управления и сигнализации, комплектные устройства (машины централизованного контроля, телемеханические устройства) и т.д.

При упрощенном изображении на схемах показывают: отборные устройства, измерительные и регулирующие приборы, исполнительные механизмы и регулирующие органы. Для изображения промежуточных устройств (вторичных приборов, преобразователей, аппаратуры управления и сигнализации и т.п.) используются общие обозначения в соответствии с действующими стандартами на условные обозначения в схемах автоматизации.

Комбинированное изображение предполагает показ средств автоматизации в основном развернуто, однако некоторые узлы изображают упрощенно.

Приборы и средства автоматизации, встраиваемые в технологическое оборудование и коммуникации или механически связанные с ними, изображают на чертеже в непосредственной близости от них. К таким средствам автоматизации относятся: отборные устройства давления, уровня, состава вещества, датчики, воспринимающие воздействие измеряемых и регулирующих величин (измерительные сужающие устройства, ротаметры, счетчики, термометры расширения и т.п.), исполнительные механизмы, регулирующие и запорные органы.

Для датчиков и приборов, указывающих положение регулирующих органов, исполнительных механизмов и т. п., необходимо показывать существующую механическую связь (см. табл. 7.2 ).

Прямоугольники щитов и пультов следует располагать в такой последовательности, чтобы при размещении в них обозначений приборов и средств автоматизации обеспечивалась наибольшая простота и ясность схемы и минимум пересечений линий связи.

В прямоугольниках можно указывать номера чертежей общих видов щитов и пультов.В каждом прямоугольнике с левой стороны указывают его наименование.

Приборы и средства автоматизации, которые расположены вне щитов и не связаны непосредственно с технологическим оборудованием и трубопроводами, условно показывают в прямоугольнике "Приборы местные". При вычерчивании функциональной схемы следует избегать дублирования одинаковых ее частей, относящихся как к технологическому оборудованию, так и к средствам автоматизации.

На чертежах функциональных схем должны быть приведены пояснения, на основании каких документов они разработаны. Допускается также на свободном поле схемы давать краткую техническую характеристику автоматизируемого объекта, поясняющие таблицы, диаграммы и т.п.

Для облегчения понимания сущности автоматизируемого объекта, возможности выбора диапазонов измерения и шкал приборов, установок регуляторов на функциональных схемах указывают предельные рабочие (максимальные или минимальные) значения измеряемых или регулируемых технологических параметров при установившихся режимах работы (см. рис.7.2 ).

Эти значения в единицах шкалы выбираемого прибора или в международной системе единиц без буквенных обозначений указываются на линиях связи от отборных устройств датчиков до приборов. Для приборов, встраиваемых непосредственно в технологическое оборудование или трубопроводы (термометры расширения, расходомеры постоянного перепада и т.п.) и располагаемых вне прямоугольников, предельные значения величин указывают под позиционными обозначениями приборов или вблизи обозначений.

Над основной надписью, по ее ширине сверху вниз, на первом листе чертежа располагают таблицу не предусмотренных стандартами условных обозначений, принятых в данной функциональной схеме; при необходимости эти таблицы можно выполнять на отдельных листах.

Пояснительный текст располагают обычно над таблицей условных обозначений (или над основной надписью) или в другом свободном месте.

Контуры технологического оборудования на функциональных схемах рекомендуется выполнять линиями толщиной 0,6 - 1,5 мм ; трубопроводные коммуникации 0,6 - 1,5 мм ; приборы и средства автоматизации 0,5 - 0,6 мм , линии связи 0,2 - 0,3 мм ; прямоугольники, изображающие щиты и пульты, 0,6 - 1,5 мм .

При выполнении функциональных схем обоими способами с изображением приборов по ГОСТ 21.404-85 отборное устройство для всех постоянно подключенных приборов не имеет специального обозначения, а представляет собой тонкую сплошную линию, соединяющую технологический трубопровод или аппарат с первичным измерительным преобразователем или прибором (см. рис. 7.2 ).

При необходимости указания точного места расположения отборного устройства или точки измерения (внутри контура технологического аппарата) в конце тонкой линии изображается окружность диаметром 2 мм (см. рис. 7.2 ).

Допускается запорную и регулирующую арматуру (например, задвижки, заслонки, шиберы, направляющие аппараты и т.п.), участвующую в системах автоматизации и заказываемую по технологической части проекта, изображать на функциональных схемах в соответствии с действующими стандартами.

Подвод линий связи к символу прибора допускается изображать в любой точке окружности (сверху, снизу, сбоку).

При необходимости указания направления передачи сигнала на линиях связи допускается наносить стрелки (см. линии связи рис.7.3 ).

Принципиальные электрические схемы (ПЭС) определяют полный документированный состав приборов, аппаратов и устройств, а также связей между ними, которые обеспечивают решение задач управления, регулирования, защиты, измерения и сигнализации. Они служат для изучения принципа действия системы и необходимы как при выполнении наладочных работ, так и в эксплуатации. Кроме того, на основании принципиальных схем разрабатываются другие документы проекта: монтажные схемы щитов и пультов, схемы внешних соединений и т. п.

На принципиальных электрических схемах все аппараты (реле, пускатели, переключатели) изображают в отключенном состоянии. При необходимости изображения какого-нибудь аппарата во включенном состоянии это оговаривается на поле чертежа.

Электрические схемы выполняют в соответствии со стандартами ГОСТ 2.701-84 и ГОСТ 2.702-85 на отдельные установки и участки автоматизированной системы (например, схема управления насоса, схемы регулирования температуры реактора и др.). В эти схемы включают: элементы схемы, устройства и взаимосвязи между ними.

Элемент схемы - составная часть схемы, которая выполняет определенную функцию в изделии и не может быть разделена на части (реле, трансформатор, резистор, диод и т. д.).

Устройство - совокупность элементов, выполняющая определенную функцию и представляющая собой единую конструкцию (блок, прибор, плата и т. д.). Линия взаимосвязи - отрезок линии, указывающий на наличие связи между элементами и устройствами.

Условные графические обозначения элементов электрических схем регламентируются рядом стандартов и обычно совпадают с условными обозначениями, принятыми в мировой практике. Однако иногда, особенно в электросхемах на импортное оборудование, встречаются графические изображения, отличные от российских стандартов. Устройства (за исключением исполнительных механизмов) показывают упрощенно в виде прямоугольников. При этом в кружках, располагаемых по контуру прямоугольника, показывают обозначения входных и выходных линий связи и питания. Допускается не приводить на принципиальных схемах обозначения выводов электроаппаратов, если они приведены в технической документации на щиты пульты. Буквенно-цифровые обозначения элементов и устройств на электрических схемах регламентированы ГОСТ 2.710-81.

Все технические средства, отображенные на принципиальной схеме, должны быть однозначно определены и записаны в перечень элементов и устройств по форме в соответствии с ГОСТ 2.702-75.

Перечень может быть выполнен либо на поле чертеже, либо отдельным документом. Часто элементы записывают группами, соответственно местам их установки.

Чтение схемы обычно начинают с основной надписи, располагаемой в нижнем правом углу листа. Здесь указывается наименование объекта,


название изделия, дата выпуска чертежа и др. Затем необходимо ознакомиться с таблицей перечня элементов, отраженных на схеме, с различными пояснениями и примечаниями. Все это позволяет установить вид и тип данной схемы, ее построение и связь с другими документами.

В принципиальных электрических схемах элементы могут изображаться двумя способами: совмещенным и разнесенным.

При совмещенном способе составные части элементов или устройств изображают на схеме в непосредственной близости друг к другу.

При разнесенном способе составные части элементов и устройств или отдельные элементы устройств изображают на схеме в разных местах таким образом, чтобы отдельные цепи изделия были изображены наиболее наглядно.

При совмещенном способе все части каждого прибора, технические средства автоматизации и электрического аппарата располагают в непосредственной близости и заключают в прямоугольный, квадратный или круглый контур, выполненный сплошной тонкой линией.

Разнесенный способ изображения является преимущественным при выполнении схем автоматизации, т.к. при этом способе отчетливо видны все электрические цепи, что облегчает чтение схем. В этом случае составные части приборов, аппаратов, технические средства автоматизации располагают в разных местах таким образом, чтобы отдельные цепи были изображены наиболее наглядно. Принадлежность изображаемых контактов, обмоток и других частей к одному и тому же аппарату устанавливается по позиционным обозначениям, проставленным вблизи изображений всех частей одного и того же аппарата.

Для облегчения чтения принципиальных электрических схем используются следующие приемы:

а) нумеруются все возможные цепи;

б) под обозначением реле помещается табличка с указанием мест
расположения контактов;

в) вблизи позиционных обозначений у изображения контакта указывается
номер цепи, в которую включена соответствующая обмотка.


На схеме (рис.50), выполненной разнесенным способом, приведены три таблички, которые размещены под обозначением реле КК1, КК2, КМ. В табличках под КК1 и КК2 нет столбцов Г (главные) и З (замыкающие), т.к. ни главных, ни замыкающих контактов тепловые реле не имеют, а в столбцах Р (размыкающие) указано 6 и 7, т.к. контакты КК1 и КК2 введены в цепь 6 и 7 соответственно. В табличке под обмоткой КМ в столбце Г имеются цифры 2, 3 и 4. Это говорит о том, что магнитный пускатель своими главными контактами разрывает силовые цепи 2,

Рис. 51 Схема релейной автоматики

3 и 4. В столбце З два адреса: 8 и 9, в столбце Р – адрес 10 и одна свободная клетка. Это означает, что пускатель имеет два замыкающих и два размыкающих контакта, причем один размыкающий контакт свободен. Схемы релейной автоматики рекомендуется выполнять строчным способом: условные графические обозначения устройств и их составных частей, входящих в одну цепь, изображают последовательно друг за другом по прямой, а отдельные цепи – рядом, в виде параллельных горизонтальных или вертикальных строк. Строки нумеруют арабскими цифрами (рис. 51).

Иногда на ПЭС показывают такие устройства, как приборы, регуляторы и т.п., имеющие собственные принципиальные схемы. В этом случае на ПЭС


эти устройства изображаются упрощенно, т.е. показываются только входные и выходные цепи и цепи подачи питающего напряжения.

В ПЭС условные графические обозначения составных частей электрических аппаратов, приборов и ТСА, входящих в одну цепь, изображают последовательно друг за другом по прямой, а отдельные цепи – либо одну под другой (при этом образуются параллельные строки), либо вертикально одну за другой.

Линии связи между аппаратами показывают полностью, но в некоторых случаях они могут быть оборваны; обрывы линий в этом случае заканчиваются стрелками.

Автоматизация большинства объектов неразрывно связана с управлением технологическими механизмами с электроприводами. Такими механизмами являются насосы, вентиляторы, задвижки, клапаны и т.п., а в качестве электроприводов используются в основном реверсивные и нереверсивные асинхронные электродвигатели с короткозамкнутым ротором. Схемы управления таких устройств обычно строятся на базе релейно-контактных элементов.

Как правило, схема управления технологическим оборудованием (электроприводом исполнительного устройства) предусматривает местное, дистанционное и автоматическое управление.

Местное управление осуществляется оператором с помощью органов управления, например, кнопочных постов, расположенных в непосредственной близости от механизма. Дистанционное управление осуществляется со щитов и пультов объекта автоматизации. При этом технологические механизмы находятся вне поля зрения оператора и их положение контролируется по сигналам “Включено” – “Отключено”, “Закрыто”– “Открыто”. Автоматическое управление обеспечивается с помощью регуляторов, а также различных программных устройств, предусматривающих автоматическое управление электроприводом с соблюдением заданных функциональных зависимостей (одновременности или определенной последовательности включения).

Вид управления (ручной или дистанционный) электроприводом выбирается с помощью переключателя цепей управления (переключателя вида управления).

Для получения начальных навыков по проектированию принципиальных схем выберем типовую принципиальную схему (рис. 52) управления электродвигателем насоса и перечень элементов к ней. Все элементы рассматриваемой схемы имеют одно- или двухбуквенные коды. Например, двигатель М, контактор КМ1, переключатель 1SA1, сигнальная лампочка 1HL1 и т. д.

Соединительные провода обозначены арабскими цифрами, при этом номера проводов, имеющие общую точку, одинаковы. Так, кнопка 1SB1 соединена с 1SB2 и замыкающим дополнительным контактом КМ 1.1 контактора КМ1 проводами, обозначенными числом 102. При этом


собственные маркировки аппаратов не обозначены, что необходимо в последующем учесть при составлении монтажных схем.

Анализируя выбранную схему управления двигателем насоса, можно сделать заключение, что катушка магнитного пускателя КМ1 будет замыкать рабочие контакты, а, следовательно, и подавать напряжение на двигатель М при нажатии кнопок 1SB2. Причем это можно осуществить только в ручном режиме, когда переключатель 1SA1 находится в положении Р. При этом контактор КМ1 через свой собственный контакт КМ 1.1 заблокируются. Выключается двигатель М в этом режиме при нажатии на кнопку 1SB1.

В положении А переключателя 1SA1 (автоматизированный режим
управления) электрический двигатель насоса будет включаться
автоматически с помощью контакта ЩА, который управляется

контроллером и показан в другом месте принципиальной схемы. На это указывает пунктирная линия вокруг контактов и ссылка на определенный номер листа принципиальной схемы (ЩА).

При перегрузке двигателя вентилятора срабатывает тепловое реле КК1, размыкающий контакт которого прекращает подачу напряжения на катушку контактора КМ1.

Связь принципиальной схемы с перечнем элементов осуществляется через позиционные обозначения. При этом в таблице «Перечень элементов и устройств» в графе «Наименование», кроме названия типа и марки, приводятся основные технические характеристики элемента или устройства. Например, для двигателя М указывается номинальные мощность, частота вращения, напряжение и ток. В отдельных случаях допускается все сведения об элементах помещать около условных графических обозначений (например, параметры реле, резисторов).


Схемы внешней проводки

Схема соединений внешних проводок (ГОСТ 21.409-93, РМ 4-6-92) это комбинированная схема, на которой изображаются электрические и трубные связи между приборами и средствами автоматизации, установленными на технологическом, инженерном оборудовании и коммуникациях (трубопроводах, воздуховодах и т.п.), вне щитов и на щитах, а также связи между щитами, пультами, комплексами или отдельными устройствами комплексов. Эта схема показывает соединения составных частей изделия (установки) и определяет провода, жгуты, кабели или трубопроводы, которыми осуществляются эти соединения, а также места их присоединений и ввода (разъемы, платы, зажимы и т.п.). Схемами соединений (монтажными) пользуются при разработке других конструкторских документов, в первую очередь, чертежей, определяющих прокладку и способы крепления проводов,

жгутов, кабелей или трубопроводов в изделии (установке), а также для осуществления присоединений и при контроле, эксплуатации и ремонте изделий (установок).

В отличие от чертежей общих видов схемы соединений щитов и пультов выполняют без соблюдения масштабов. На схеме соединений изображают все элементы и устройства, входящие в состав щита или пульта. При этом их расположение должно примерно соответствовать действительному размещению в изделии. Устройства изображают в виде прямоугольников или условных графических обозначений с отображением всех выводов (контактов) для подключения проводников. На схеме указывается: для проводов - марка, сечение и, при необходимости, расцветка; для кабелей - марка, количество и сечение жил. Схемы соединений выполняют различными способами, но во всех случаях должны быть обозначены все контактные элементы, через которые осуществляются электрические соединения, и отходящие от них проводники. На простых схемах полностью показывают все проводники, которыми соединяются аппараты, приборы и другие элементы, и чтение таких схем не вызывает трудностей.

В случае сложных устройств для упрощения выполнения и чтения схем соединений рядом с обозначением каждого аппарата или прибора в пределах схемы проставляют его порядковый номер (в числителе), начиная с первого, и позиционное обозначение (в знаменателе), соответствующее принципиальной схеме. Концы проводников маркируют, то есть наносят адресное обозначение второго конца провода: первое число -порядковый номер аппарата; второе - номер его вывода, к которому подключен его конец. Кроме того, для лучшего понимания схемы и ее связи с принципиальной схемой рядом с проводником ставят обозначение цепи.

Технические средства, для которых на схемах приводят подключения электропроводок, изображают упрощенно внешними очертаниями или в виде прямоугольников. Входные и выходные элементы (контакты) устройств показывают в виде кружков (для круглых штепсельных разъемов) или прямоугольников (например, для сборок колодок зажимов, рейки с набором зажимов).


Схемы соединений в общем случае должны содержать:

1) первичные приборы;

2) внещитовые приборы, групповые установки приборов;

3) щиты (распределительная колодка, DIN –рейка в шкафу), комплексы;

4) внешние электрические и трубные проводки;

5) защитное заземление и зануление систем автоматизации;

6) технические требования (указания);

7) перечень элементов.

Внешние электрические проводки выполняют отдельными сплошными толстыми линиями. При этом проводки, проложенные в коробах, изображают двумя параллельными тонкими линиями на расстоянии 3-4 мм друг от друга. Для каждой проводки над изображающей ее линией указывают техническую

характеристику (тип, марка кабеля, провода, трубы и т. д.) и длину проводки. Кабелям и жгутам проводов присваивают порядковые номера. Порядковые номера кабелей в коробах присваивают с добавлением буквы «К».

Маркировку жил кабелей и проводов на схемах соединений и подключения проставляют в соответствии с принципиальными электрическими схемами и указаниями руководящего материала PM4-106.

Для каждой внешней электрической проводки приводят ее техническую характеристику и длину: для проводов - марку, сечение и, при необходимости, расцветку, а также длину . Длину указывают один раз на линии проводки, отходящей непосредственно от первичного прибора, при этом указывают полную длину провода или жгута до места его подключения к зажимам щитов, коробок, приборов. При прокладке в одной защитной трубе нескольких проводов перед маркой проставляют их количество, например 4ПТВ 2х2,5М; для кабелей - марку, количество и сечение жил и, при необходимости, количество занятых жил, которые указывают в прямоугольнике, помещаемом справа от обозначения данных кабеля, а также длину кабелей, для трубы - диаметр и длину.

Около графических обозначений соединительных, протяжных коробок над полкой линии-выноски указывают их обозначения и порядковый номер, например: КСК-8 №1. Под полкой линии-выноски соединительных коробок указывают обозначения чертежей их установки.

Провода и их соединения, расположенные снаружи должны быть уложены
в короба (например, трубы, каналы, лотки) за исключением надежным
способом защищенных кабелей, которые могут прокладываться без
защитного короба с использованием или без использования открытых
кабельных трасс или опорных конструкций.

Короба должны обеспечивать минимальную степень защиты IP33 (ГОСТ 14254).

Номера проводок указывают в окружностях, помещаемых в разрыве линий. Пример схемы подключения внешних проводок управления электроприводом, приведенным на рис. 33, показан на рис. 37. Здесь подвод питания осуществляется от электросети кабелем №1 марки ВВГ, пятижильным, сечением 1,5 мм2, проложенным в пластмассовой трубе длиной 5 м. Электродвигатель М1 связан со щитом местного управления ЩМУ1 трассами 2К и 3К, каждая из которых выполнена 4 медными проводами марки ПВ сечением 1,5 мм, уложенными в пласмассовом коробе длиной 4м. Дистанционное управление двигателями от центрального щита управления ША осуществляется с помощью 4-жильного контрольного кабеля КВВГ сечением 1,0 мм, проложенного в пласмассовой трубе длиной 7м.

Схемы соединений следует выполнять, отдельными документами для каждого блока автоматизируемого объекта, монтаж которого может быть осуществлен независимо от других блоков. При этом в наименовании документа дополнительно указывают наименование блока.

Схемы соединений и подключения внешних проводок выполняется на основании следующих материалов:

Схем автоматизации технологических процессов;

Принципиальных электрических, пневматических, гидравлических схем;

Технических описаний и инструкций по эксплуатации на приборы и средства автоматизации, примененные в проекте;

Таблиц соединений и подключения проводок щитов и пультов, выполняемых в соответствии с указаниями по PM4-107;

Чертежей расположения технологического, сантехнического, энергетического и т.п. оборудования и коммуникаций с отборными и приемными устройствами, а также строительных чертежей со всеми необходимыми для прокладки внешних проводок закладными и приварными конструкциями, эстакадами, туннелями, каналами, проемами и т.д.

Обязательным предварительным этапом работы по выполнению схем соединений и подключения должны быть: проверка наличия на чертежах технологии производств и инженерных систем всех закладных и отборных устройств, необходимых для установки первичных измерительных преобразователей на коммуникациях и оборудовании.

Схемы соединений и подключения выполняется без соблюдения масштаба на одном или нескольких листах формата не более A1 (594x841) по ГОСТ 2.301.

Действительное пространственное расположение устройств и элементов схем либо не учитывается вообще, либо учитывается приближенно.

Толщина линий, изображающих устройства и элементы схем, в том числе кабели, провода, трубы, должна быть от 0,4 до 1 мм по ГОСТ 2.303.

На схемах должно быть наименьшее количество изломов и пересечений проводок.

Расстояние между соседними параллельными проводками, а также между соседними изображениями приборов и средств автоматизации, должно быть не менее 3-х мм.


На схемах соединений в верхней ее части, а при большой насыщенности схемы приборами в верхней и нижней частях, в зеркальном изображении, размещают таблицу с поясняющими надписями в соответствии с рис.53.


Размеры строк таблицы следует принимать исходя из размещаемых в этих графах текстов надписей.

В строку "Позиция" вносятся позиции приборов по схеме автоматизации и позиционные обозначения электроаппаратуры, присвоенные ей по принципиальным электрическим схемам. Для элементов систем автоматизации, не имеющих самостоятельной позиции (отборные устройства и т.п.), указывают позицию прибора, к которому они относятся, с предлогом "к". Пример: к 1а.

Под таблицей изображают приборы и средства автоматизации, устанавливаемые непосредственно на технологическом оборудовании и коммуникациях (первичные приборы, исполнительные механизмы).

Для приборов, не имеющих номеров электрических внешних выводов (например, соединительные коробки) на схеме соединений изображают упрощенно в виде прямоугольника, без сборок зажимов и без сальников в соответствии.

В лотках для прокладки кабеля, соединительных и ответвительных коробках могут допускаться отверстия диаметром 6 мм для удаления воды, если предполагается ее скопление в этих кабельных конструкциях.

Открытые короба и лотки для прокладки кабеля должны жестко закрепляться на достаточном удалении от подвижных частей технологического оборудования, чтобы уменьшить опасность повреждения или износа. В местах, где необходим проход людей, открытые короба и лотки должны монтироваться на высоте как минимум 2 м над рабочей площадкой.

Кабельные короба должны использоваться только в качестве механической защиты.

Ввиду того, что кабельные подводы (лотки), которые защищены лишь частично, не рассматриваются в качестве коробов или кабельных несущих систем, то используемые кабели должны быть пригодны для установки на кабельных лотках.

Жесткие металлические каналы и арматура должны быть изготовлены из гальванизированной стали или материала, устойчивого к коррозии, и приспособлены к условиям эксплуатации. Не рекомендуется использовать различные материалы, которые при контакте могут являться источником гальванической коррозии.

В промышленных машинах предполагаются следующие классические способы проводки между кожухами и отдельными элементами (используемые обозначения соответствуют МЭК 60364-5-523; рисунок 54):


Рис. 54 Методы укладки кабелей и проводов

Здесь показаны:

B1 - короба и кабель-несущие каналы для поддержки и защиты проводов (одножильные кабели);

В2 - то же, что В1, но с многожильными кабелями;

С - кабели, прокладываемые на стенах без коробов и каналов;

Е - кабели, прокладываемые в открытых горизонтальных или вертикальных трассах (шинопроводах)

Для преобразователей термоэлектрических, термопреобразователей сопротивления), а также для пневматических исполнительных механизмов применяют графические условные обозначения, принятые для этих приборов на схемах автоматизации (ГОСТ 21.404). В нижней части формата располагают внещитовые приборы, щиты и др. технические средства. В случае принятых проектных решений на щите показывается DIN- рейка с контактной группой (рис. 55).


Рис.55 Фрагмент схемы внешних проводок

При расположении таблиц с поясняющими надписями в верхней и нижней частях поля чертежа шкафы местного управления изображают в виде прямоугольников в средней части чертежа. При расположении таблицы только сверху шкафы изображают в нижней части поля чертежа. Внутри прямоугольника указывается наименование шкафа. На части схемы подключения шкафа приводят и наносят:

Изображения устройств, к которым подключают проводки (например,
DIN- рейку, колодки щитовых приборов);

Подключение к ним жил кабелей, проводов и труб и их обозначения;

Отрезки кабелей, труб в соответствии со схемой соединений.

Отрезки кабелей и труб, противоположные подключению, заканчивают фигурной скобкой со ссылкой на обозначение и/или номер листа основного комплекта, на котором приведена схема соединений.


Монтажные чертежи и схемы соединений показывают взаимное расположение приборов и устройств на щитах и пультах и их взаимосвязь. В АС различают схемы шкафа управления оборудованием полевого уровня (рис. 40) и внешней проводки коммуникационного шкафа (рис.56).

Здесь на рис 56 показана внешняя проводка для схемы управления двигателем для примера, рассмотренного лекции 16 (рис.52). На рис. 57 показана связь между релейной контактной группой дистанционного управления этим же двигателем и устройством дискретного вывода.


Рис. 57 Пример схемы подключения внешних проводок устройства ввода вывода SCADA Шкафы и схемы расположения

Конструкция шкафов, а также места установок и расположения на них устройств изображаются на чертежах общих видов. Чертежи общих видов должны выполняться в строгом соответствии со стандартом ЕСКД. В зависимости от функционального назначения щита и его конструктивных особенностей эскизный чертеж шкафа содержит:

Спецификацию, в которую кроме технических средств автоматизации входят изделия для установки и монтажа, кабели и провода;

Вид спереди;

Вид на внутренние плоскости;

Таблицу надписей.

В отличие от чертежей общих видов схемы соединений шкафов и пультов выполняют без соблюдения масштабов. На схеме соединений изображают все элементы и устройства, входящие в состав шкафа или пульта. При этом их расположение должно примерно соответствовать действительному размещению в изделии. Устройства изображают в виде прямоугольников или условных графических обозначений с отображением всех выводов (контактов) для подключения проводников. На схеме указывается: для проводов - марка, сечение и, при необходимости, расцветка; для кабелей - марка, количество и сечение жил. Схемы соединений выполняют различными способами, но во всех случаях должны быть обозначены все контактные элементы, через которые осуществляются


электрические соединения, и отходящие от них проводники. На простых схемах полностью показывают все проводники, которыми соединяются аппараты, приборы и другие элементы, и чтение таких схем не вызывает трудностей.

В случае сложных устройств для упрощения выполнения и чтения схем соединений рядом с обозначением каждого аппарата или прибора в пределах схемы проставляют его порядковый номер (в числителе), начиная с первого, и позиционное обозначение (в знаменателе), соответствующее принципиальной схеме. Концы проводников маркируют, то есть наносят адресное обозначение второго конца провода: первое число - порядковый номер аппарата; второе - номер его вывода, к которому подключен его конец. Кроме того, для лучшего понимания схемы и ее связи с принципиальной схемой рядом с проводником ставят обозначение цепи.

Для выбранной принципиальной схемы управления двигателем насоса (пример лекции 16, рис.52) возможный вариант эскизной монтажной схемы пульта

управления местного уровня (ЩМУ1) показан на рис.58. Расположение аппаратуры на схеме примерно соответствует фактическому размещению в конструкции шкафа. Рядом с каждым аппаратом проставлен порядковый номер и позиционное обозначение. Так, возле клеммной колодки - 1/ХТ1, вводного автоматического выключателя - 2/QF и т. д. Внутри каждого

элемента проставлена нумерация выводов, соответствующая заводской маркировке. Монтаж силовых цепей показан прямым соединением проводников между аппаратами. Соединения цепей управления выполнены адресным методом. Так, электрическая цепь 104 (пример лекции 16, рис. 33) выполнена следующим образом.


Выводы 2 и 4 переключателя 1SA1 (аппарат 9) перемкнуты между собой, а с вывода 2 выходит провод 11-1 (аппарат 11, вывод 1). Второй конец этого провода на лампочке 1HL1 (аппарат 11) имеет маркировку 9-2 (аппарат 9, вывод 2). Кроме того, с вывода 1 аппарата 11 отходит провод 1-12 (на клеммник ХТ1), который на втором конце имеет маркировку 11-1. Провод, соединяющий клеммник 12 ХТ1 с контактом теплового реле КК1, имеет маркировку 5-95 и 1-12 соответственно со стороны клеммника и реле. На поле чертежа схемы указано, какие провода каким проводом монтировать, а для защитного нулевого провода - и его цвет. На поле чертежа могут быть также указаны способы ведения монтажа. Например: «Монтаж выполнить с использованием перфорированных коробов 25x25 мм с их установкой по месту»; «Клеммные колодки устанавливать на рейки DIN», «Провода, соединяющие клеммник ХТ1 с аппаратурой на двери шкафа, выполнить в виде жгута в спиральной трубке диаметром 10 мм», и т. п. Если по техническим условиям на аппаратуру прокладка проводов в жгутах недопустима (например, компенсационные провода), или необходимо применение экранированного провода, то такие проводки на схеме изображают пунктиром. При этом концы экранов должны быть соединены с нулевым защитным проводником РЕ.

Правильное взаимодействие всех элементов автоматики и нормальная работа всей системы возможна только при соединении их в соответствии со схемами подключения внешних проводок.


Схема расположения определяет относительное расположение составных частей АС, а при необходимости также жгутов, проводов, кабелей, трубопроводов и т.п. Схемами расположения пользуются при разработке других конструкторских документов, а также при эксплуатации и ремонте АС.

На рис. 59 показан схема расположения и проводок подключения электроприводов. Питание щита местного управления 5 осуществляется проводной линией 1, проложенной в трубе вводного щитка 8. Проводные линии 2 и 3 проложенные в закрытых коробах соединяют ЩМУ1 с двигателями 6 и 7. Проводная линия 4 обеспечивает через ЩМУ1 автоматическое дистанционное управление двигателями от щита автоматики 9, расположенного в операторном помещении.


Похожая информация.


Структурные схемы автоматизации в проектах автоматизации рекомендуется разрабатывать в соответствии с ГОСТ 24.302-80 . Система технической документации на АСУ. Общие требования к выполнению схем (п. 2.1, 2.2, 2.6).

Графическое построение схемы должно давать наиболее наглядное представление о последовательности взаимодействия функциональных частей в изделии. На линиях взаимодействия рекомендуется стрелками (по ГОСТ 2.721-74 ) обозначать направления хода процессов, происходящих в изделии.

На структурной схеме отображаются в общем виде основные решения проекта по функциональной, организационной и технической структурам автоматизированной системы управления технологическими процессами (АСУ ТП) с соблюдением иерархии системы и взаимосвязей между пунктами контроля и управления, оперативным персоналом и технологическим объектом управления. Принятые при выполнении структурной схемы принципы организации оперативного управления технологическим объектом, состав и обозначения отдельных элементов структурной схемы должны сохраняться во всех проектных документах на АСУ ТП, в которых они конкретизируются и детализируются в функциональных схемах автоматизации, структурной схеме комплекса технических средств (КТС) системы, принципиальных схемах контроля и управления, а также в проектных документах, касающихся организации оперативной связи и организационного обеспечения АСУ ТП.

Исходными материалами для разработки структурных схем являются:

  • задание на проектирование АСУ ТП;
  • принципиальные технологические схемы основного и вспомогательного производств технологического объекта;
  • задание на проектирование оперативной связи подразделений автоматизируемого технологического объекта;
  • генплан и титульный список технологического объекта.

Структурная схема разрабатывается на стадиях «проект» и «рабочий проект». На стадии «рабочая документация» при двух - стадийном проектировании структурная схема разрабатывается только в случае изменений технологической части проекта или решений по АСУ ТП, принятых при утверждении проекта автоматизации.

В качестве примера на рис. 8.4 приведена структурная схема управления сернокислотным производством.

На структурной схеме показывают :

  • технологические подразделения автоматизируемого объекта (отделения, участки, цехи, производства);
  • пункты контроля и управления (местные щиты, операторские и диспетчерские пункты и т.п.), в том числе не входящие в состав разрабатываемого проекта, но имеющие связь с проектируемыми системами контроля и управления;
  • технологический (эксплуатационный) персонал и специализированные службы, обеспечивающие оперативное управление и нормальное функционирование технологического объекта;
  • основные функции и технические средства (устройства), обеспечивающие их реализацию в каждом пункте контроля и управления;
  • взаимосвязь подразделений технологического объекта, пунктов контроля и управления и технологического персонала между собой и с вышестоящей системой управления (АСУ).

Рис. 8.4 . Фрагмент структурной схемы управления и контроля сернокислотным производством:1-линия связи с цеховой химической лабораторией; 2 - линия связи с пунктами контроля и управления кислотным участком; 3 - линия связи с пунктом контроля и управления III и IV технологическими линиями

Функция АСУ ТП и их условные обозначения на рис. 8.4

Таблица 8.1

Условное обозначение Наименование
Контроль параметров
Дистанционное управление технологическим оборудованием и исполнительными устройствами
Измерительное преобразование
Контроль и сигнализация состояния оборудования и отклонения параметров
Стабилизирующее регулирование
Выбор режима работы регуляторов и ручное управление задатчиками
Ручной ввод данных
Регистрация параметров
Расчет технико-экономических показателей
Учет производства и составления данных за смену
Диагностика технологических линий (агрегатов)
Распределение нагрузок технологических линий (агрегатов)
Оптимизация отдельных технологических процессов
Анализ состояния технологического процесса
Прогнозирование основных показателей производства
Оценка работы смены
Контроль выполнения плановых заданий
Контроль проведения ремонтов
Подготовка и выдача оперативной информации в АСУП
Получение производственных ограничений и заданий от АСУП


Элементы структурной схемы изображаются, как правило, в виде прямоугольников. Отдельные функциональные службы [отдел главного энергетика (ОГЭ), отдел главного механика (ОГМ), отдел технического контроля (ОТК) и т.п.] и должностные лица (директор, главный инженер, начальник цеха, начальник смены, мастер и т. п.) допускается изображать на структурной схеме в виде кружков.

Внутри прямоугольников, изображающих участки (подразделения) автоматизируемого объекта, раскрывается их производственная структура. При этом выделяются цехи, участки, технологические линии либо группы агрегатов для выполнения законченного этапа технологического процесса, которые являются существенными для раскрытия в документах проекта всех взаимосвязей между управляемой (технологическим объектом управления) и управляющей системами.

На схеме функции АСУ ТП могут указываться в виде условных обозначений, расшифровка которых дается в таблице на поле чертежа (табл.8.1 ).

Наименование элементов производственной структуры должны соответствовать технологической части проекта и наименованиям, используемым при выполнении других документов проекта АСУ ТП.

Взаимосвязь между пунктами контроля и управления, технологическим персоналом и объектом управления изображается на схеме сплошными линиями. Слияние и разветвление линий показываются на чертеже линиями с изломом (рис.8.4 ).

При наличии аналогичных технологических объектов (цехов, отделений, участков и т. д.) допускается раскрывать на схеме структуру управления только для одного объекта. Об этом на схеме даются необходимые пояснения.

Из структурной схемы на рис.8.4 следует, что система управления основными технологическими процессами сернокислотного производства четырехуровневая:

  • первый уровень - местное управление агрегатами осуществляемое аппаратчиками с рабочих постов;
  • второй уровень - централизованное управление несколькими агрегатами, входящими в тот или иной технологический участок, осуществляемое старшим аппаратчиком;
  • третий уровень - централизованное управление несколькими участками, входящими в I и II (или III и IV) технологические линии сернокислотного производства;
  • четвертый уровень - управление с диспетчерского пункта всеми технологическими линиями сернокислотного производства, осуществляемое диспетчером.

Структурные схемы выполняются, как правило, на одном листе. Таблица с условными обозначениями (табл.8.1 ) располагается на поле чертежа схемы над основной надписью. Таблица заполняется сверху вниз. При большом числе условных обозначений продолжение таблицы помещают слева от основной надписи с тем же порядком заполнения. Основную надпись и дополнительные графы к ней выполняют согласно ГОСТ 21.103-78 .

Толщину линий на схеме выбирают в соответствии с ГОСТ 2.303-68 . Рекомендуется использовать для условных изображений линии толщиной 0, 5 мм; для линий связи - 1 мм; для остальных линий - 0, 2 - 0, 3 мм.

Размеры цифр и букв для надписей выбирают в соответствии с ГОСТ 2.304-81 . Пояснительный текст следует выполнять в соответствии с ГОСТ 2.316-68 . Текстовую часть, помещенную на поле чертежа, располагают над основной надписью. Между текстовой и основной надписями не допускается помещать изображения, таблицы и т.п. Пункты пояснительного текста должны иметь сквозную нумерацию. Каждый пункт записывают с красной строки. Заголовок «Примечание» не пишут. В тексте и надписях не допускаются сокращения слов, за исключением общепринятых, а также установленных приложениями к ГОСТ 2.316-68 и ГОСТ 2.105-95 .

Размеры всех условных изображений не регламентируются и выбираются по усмотрению исполнителя с соблюдением одинаковых размеров для однотипных изображений.

В настоящее время для технологического контроля и автоматического управления широкое применение находят агрегатированные системы средств телемеханики, комплексы технических средств локальных измерительных и управляющих систем, агрегатированные системы контроля и регулирования, электрические централизованные и др.

Агрегатированные комплексы выполняются, как правило, на элементах микроэлектронной техники, имеют развитую и гибкую систему связей между входящими в нее устройствами, а также с объектом управления и обслуживающим персоналом, обеспечивающую достаточно широкие возможности их использования в различных вариантах компоновки и режимах работы.

Персональные ЭВМ и сети ПЭВМ находят широкое применение для компоновки различных структур АСУ ТП в энергетической, химической, нефтехимической, нефтеперерабатывающей, газовой, металлургической, металлообрабатывающей, горнорудной, приборостроительной, целлюлозно-бумажной и других отраслях промышленности.

Они позволяют реализовать следующие информационно-вычислительные функции АСУ ТП:

  • сбор, первичную обработку и хранение информации;
  • косвенные измерения параметров процесса и состояния технологического оборудования;
  • сигнализацию состояния параметров технологического процесса и оборудования;
  • расчет технико-экономических и эксплуатационных показателей технологического процесса и технологического оборудования;
  • подготовку информации для вышестоящих и смежных систем и уровней управления;
  • регистрацию параметров технологического процесса, состояний оборудования и результатов расчета;
  • контроль и регистрацию отклонений параметров процесса и состояния оборудования от заданных;
  • анализ срабатывания блокировок и защит технологического оборудования;
  • диагностику и прогнозирование хода технологического процесса и состояния технологического оборудования;
  • оперативное отображение информации и рекомендаций ведения технологического процесса и управления технологическим оборудованием;
  • выполнение процедур автоматического обмена информацией с вышестоящими и смежными системами управления.

На базе промышленных УЭВМ реализуются управляющие вычислительные комплексы (УВК), выполняющие различные функции , в том числе:

  • регулирование отдельных параметров технологического процесса;
  • однотактное логическое управление;
  • каскадное регулирование;
  • многосвязанное регулирование;
  • программные и логические операции дискретного управления процессом и оборудованием;
  • оптимальное управление установившимся режимом технологического процесса и работы оборудования;
  • оптимальное управление переходным процессом;
  • оптимальное управление технологическим объектом в целом.

В проекте автоматизации необходимо произвести выбор и компоновку агрегатированных комплексов технических средств и средств автоматизации, т.е. на базе типовых технических средств разработать структурную схему технологического контроля и управления определенными параметрами данного объекта автоматизации.

На структурной схеме агрегатированные и модульные элементы комплекса технических средств и средств автоматизации изображают в виде прямоугольников с указанием в них условных обозначений. Расшифровка этих обозначений с указанием их функций производится в таблице, помещенной на чертеже схемы. Связь между элементами схемы изображается линиями со стрелками, показывающими направление прохождения сигналов.

В качестве примера на рис.8.5 приведена упрощенная структурная схема технического обеспечения АСУ ТП доменной печи № 9 Криворожского металлургического завода, построенная с использованием средств УВК. Доменная печь имеет конвейерную систему подачи материалов на колошник. Сбор информации о работе доменной печи, конвейерной системы, шихтоподачи и других систем осуществляется датчиками уровня ДУ в шихтовых и датчиками вида материала ДВМ в промежуточных бункерах, сигнализаторами С наличия и вида материалов на конвейерах переполнения течек и промежуточных воронок, датчиками давления и перепада давления ДДПД в отдельных полостях загрузочного устройства, датчиками угла поворота ДУП лотка загрузочного устройства, датчиками температуры ДТ, датчиками расхода ДР и т. п.

Обработка и предоставление информации, стабилизация или изменение по заданной программе технологических параметров, ввод информации в УВМ и вывод рекомендаций по управлению ходом доменной печи и другие операции осуществляются с помощью технических средств централизованного контроля и управления работой доменной печи.

При разработке проектов автоматизации сложных технологических процессов с использованием агрегатированных комплексов вычислительной техники, требующих предварительного проведения научно-исследовательских экспериментальных работ в условиях действующего оборудования в период освоения проектных мощностей, следует предусматривать поэтапное выполнение монтажных работ и включение УВК в работу.

1) пуск объекта с технологическим контролем и автоматическим управлением от локальных систем регулирования; в этот период уточняются динамические и статические характеристики объекта, устраняются ошибки монтажа и проекта, возможные дефекты технологического оборудования, стабилизируется технологический процесс и т. п.; отрабатываются программы и алгоритмы на УВМ без их подключения к действующему технологическому оборудованию;

2) подключение УВМ к действующему технологическому оборудованию и включение ее в режим «советчика» с выдачей эксплуатационному персоналу рекомендаций по управлению ходом доменной печи;

3) включение УВМ в режим автоматического управления объектом через системы локального регулирования.

При необходимости в проектах автоматизации приводятся структурные схемы отдельных комплексов технических средств и средств автоматизации.

Рис. 8.5 . Упрощенная структурная схема АСУ ТП доменной печи № 9 Криворожского металлургического завода

ДНМ - датчики наличия материалов; ДУ - датчики уровня; ДВ - датчики массы; АШиК - анализаторы шихты и кокса; ВК - влагомер кокса; ДВМ - датчики вида материалов; ДРЛК - датчики разрыва лент конвейеров; ПВМБ - питатели для выдачи материалов из бункеров; ИМ - исполнительные механизмы; ДТ - датчики температуры; ДДПД - датчики давления или перепада давлений; ДР - датчики расхода; ДВл - датчики влажности; АДиГ - анализаторы дутья и газа; ДУП- датчики угла поворота; ТК - телекамеры; СТ - сигнальное табло; ВП - вторичные приборы; МС - мнемосхемы; КУ - ключи управления; РЗВД - ручные задатчики массы дозы; ЛСДМ - локальные системы дозирования материалов; ЛСР - локальные системы регулирования; БЦИЧ - блок цифровой индикации с частотными вводами; РДЗ - ручные дистанционные задатчики; ЦИ - цифровые индикаторы; ИПМ-индикаторы положения механизмов; ТВ - телевизоры; ЭВМ ШП - электронная вычислительная машина шихтоподачи (управляющая взвешиванием материалов и производительностью тракта ШП); ЦВУ СЦК - цифровое вычислительное устройство системы централизованного контроля (осуществляющее сбор и обработку первичной информации, расчет комплексных и удельных показателей работы печи, автоматическое заполнение отчетных документов); БЦР - блок цифровой регистрации; БЦИД- блок цифровой индикации с дискретными вводами; ЭВМ УХДП - электронная вычислительная машина, управляющая тепловым состоянием и ходом печи; ИТ - информационные табло; I - первый этап внедрения (пусковой комплекс); II и III-соответственно второй и третий этапы внедрения.

18 Расчётные методы определения параметров настройки контроллеров в ЛСУ

19 Моделирование ЛСУ

Моделирование, в общем смысле – это представление какого-либо явления (процесса) некоторым описанием.

Описание может быть словесным, в виде моделей:

Физическое моделирование - это исследование объектов на физических моделях, представляющих собой некоторые объекты, сохраняющие физическую природу исходного объекта, либо описываемые математическими уравнениями, аналогичными уравнениям. описывающим исходный объект. Примером первого типа моделирования является исследование аэродинамических свойств самолета или автомобиля на макетах, примером второго типа моделирование маятника с помощью RLC – цепочки (колебательного звена).

Математическое моделирование - ММ – запись на языке математики законов, управляющих протеканием исследуемого процесса или описывающих функционирование изучаемого объекта. ММ представляет собой компромисс между бесконечной сложностью изучаемого объекта или явления и желаемой простотой его описания.

ММ должна быть достаточно полной для того. чтобы можно было изучать свойства объекта и в то же время простой для того. чтобы ее анализ существующими в математике и вычислительной технике средствами был возможен.

Имитационное моделирование основано на воспроизведении с помощью ЭВМ развернутого во времени процесса функционирования системы с учетом взаимодействия с внешней средой. Основой всякой имитационной модели (ИМ) является: разработка модели исследуемой системы, выбор информативных характеристик объекта, построение модели воздействия внешней среды на систему, выбор способа исследования имитационной модели. Условно имитационную модель можно представить в виде действующих, программно (или аппаратно) реализованных блоков. Блок имитации внешних воздействий (БИВВ) формирует реализации случайных или детерминированных процессов, имитирующих воздействия внешней среды на объект. Блок обработки результатов (БОР) предназначен для получения информативных характеристик исследуемого объекта. Необходимая для этого информация поступает из блока математической модели объекта (БМО). Блок управления (БУИМ) реализует способ исследования имитационной модели, основное его назначение – автоматизация процесса проведения ИЭ.

Целью имитационного моделирования является конструирование ИМ объекта и проведение ИЭ над ней для изучения закона функционирования и поведения с учетом заданных ограничений и целевых функций в условиях иммитации и взаимодействия с внешней средой. К достоинствам метода имитационного моделирования могут быть отнесены: 1. проведение ИЭ над ММ системы, для которой натурный эксперимент не осуществим по этическим соображениям или эксперимент связан с опасностью для жизни, или он дорог, или из-за того, что эксперимент нельзя провести с прошлым; 2. решение задач, аналитические методы для которых неприменимы, например, в случае непрерывно- дискретных факторов, случайных воздействий, нелинейных характеристик элементов системы и т.п.; 3.возможность анализа общесистемных ситуаций и принятия решения с помощью ЭВМ, в том числе для таких сложных систем, выбор критерия сравнения стратегий поведения которых на уровне проектирования не осуществим; 4.сокращение сроков и поиск проектных решений, которые являются оптимальными по некоторым критериям оценка эффективности; 5.проведение анализа вариантов структуры больших систем, различных алгоритмов управления изучения влияния изменений параметров системы на ее характеристики и т.д. Задачей имитационного моделирования является получение траектории движения рассматриваемой системы в n – мерном пространстве (Z 1 , Z 2 , … Z n), а также вычисление некоторых показателей, зависящих от выходных сигналов системы и характеризующих ее свойства. Основные методы имитационного моделирования:Аналитический метод применяется для имитации процессов в основном для малых и простых систем, где отсутствует фактор случайности. Метод статистического моделирования первоначально развивался как метод статистических испытаний. Это численный метод, состоящий в получении оценок вероятностных характеристик, совпадающих с решением аналитических задач (например, с решением уравнений и вычислением определенного интеграла).Комбинированный метод (аналитико-статистический) позволяет объединить достоинства аналитического и статистического методов моделирования. Он применяется в случае разработки модели, состоящей из различных модулей, представляющих набор как статистических так и аналитических моделей, которые взаимодействуют как единое целое. Причем в набор модулей могут входить не только модули соответствующие динамическим моделям, но и модули соответствующие статическим математическим моделям.

20 Оценка качества функционирования ЛСУ

Автоматические системы управления должны быть не только устойчивыми, но и обеспечивать качество процесса управления. Основные наиболее существенные требования к качеству управления, которые позволяют оценить работу почти всех систем управления, называют показателями процесса управления. Они характеризуют поведение системы в переходном процессе. Показателями качества будет время регулирования, перерегулирование, колебательность процесса, установившаяся ошибка, характер затухания переходного процесса, запас устойчивости.

Качество процессов регулирования обычно оценивают по переходной функции, которая представляет собой реакцию системы на внешнее воздействие типа единичного скачка. Для следящих систем и программного регулирования переходную функцию рассматривают по отношению к задающему воздействию, а для систем стабилизации – по отношению к возмущению.

Рисунок 1. Определение показателей качества регулирования по переходной характеристике.

На рис. 1 изображена переходная функция по которой можно определить основные показатели качества переходного процесса: время регулирования, перерегулирование и др.

Время регулирования определяет длительность переходного процесса. Теоретически переходной процесс длится бесконечно долго, однако практически его считают законченным, как только отклонение регулируемой величины от нового ее установившегося значения не будет превышать допустимых пределов.

Временем регулирования называют минимальное время, по истечении которого, начиная с момента начала действия входного сигнала, выходная переменная отклоняется от установившегося значения на величину, не превышающую некоторую заданную постоянную величину 0,5.

Время регулирования характеризует быстродействие системы.

Быстродействие может характеризоваться и временем достижения переходной функцией нового установившегося значения, и временем достижения максимального значения.

Перерегулированием называется максимальное отклонение управляемой величины от заданного значения и выраженной в процентах.

Время регулирования и перерегулирования взаимосвязаны. Так, перерегулирование зависит от скорости изменения регулируемой величины, которая графически представляет собой тангенс угла наклона α (альфа) касательной в точке А к кривой (рисунок 1).

Чем больше эта скорость, тем больше перерегулирование. Поэтому для его уменьшения необходимо уменьшить скорость, с которой система подходит к новому установившемуся состоянию. Но это приведет к увеличению времени регулирования. Если система подходит к установившемуся состоянию с нулевой скоростью, то перерегулирования вообще не будет, но время регулирования значительно увеличится (рисунок 2).

Рисунок 2. Переходная характеристика системы автоматического регулирования без перерегулирования.

Значения времени регулирования и перерегулирования часто задают в качестве исходных данных для синтеза корректирующих устройств, поскольку правильным выбором и настройкой последних обеспечивается подавление нежелательных колебаний регулируемой величины в переходном процессе. Для некоторых систем перерегулирование вообще недопустимо, например для систем автоматического регулирования физических величин в процессах, связанных с приготовлением продуктов. Необходимо так же иметь в виду, что стремление уменьшить время регулирования приводит к увеличению мощности исполнительного устройства.

Колебательность процесса характеризуется числом колебаний управляемой величины за время регулирования.

Количественно колебательность оценивается по логарифмическому декременту затухания, который представляет собой натуральный логарифм отношения двух последующих амплитуд отклонений управляемой величины одного направления.

Чем больше логарифмический декремент затухания, тем быстрее происходит затухание переходного процесса.

Установившаяся ошибка показывает точность управления в установившемся режиме. Она ровняется разности между заданным значением управляемой величины и ее установившимся значением при нормальной нагрузке.

Характер затухания переходного процесса позволяет классифицировать переходные процессы в системах управления и выделить среди их многообразия четыре основных вида (рисунок 3): колебательный процесс (кривая 1) – ему присуще несколько значений перерегулирования; малоколебательный процесс (кривая 2) – процесс с одним перерегулированием; монотонный процесс (кривая 4), при котором скорость изменения управляемой величины не изменяет знака в течение всего времени регулирования; апериодический процесс (кривая 3) – процесс, когда управляемая величина меньше ее установившегося значения с точностью до зоны нечувствительности регулятора при всех значениях времени регулирования.

Рисунок 3. Основные виды характеристик переходных процессов автоматических систем регулирования при типовом единичном воздействии.

Запас устойчивости – это физическая сущность и методы определения этого показателя качества управления.

Показатели, которые характеризуют качество работы системы в переходном режиме, делят на прямые и косвенные.

Прямые показатели – это числовые оценки качества, получаемые непосредственно по переходной характеристике. Для получения прямых показателей качества необходимо иметь кривую переходного процесса, которую можно построить по структурной схеме или дифференциальному уравнению систем автоматического регулирования, используя аналоговые вычислительные машины или компьютеры.

Косвенные оценки качества переходного процесса позволяют определить некоторые особенности переходного процесса и установить влияние параметров системы на качество переходных процессов. К косвенным показателям качества относятся корневые, частотные и интегральные оценки.

Рассмотрим корневые оценки качества. Геометрически степень устойчивости можно определить как расстояние на плоскости от мнимой оси до ближайшего к ней корня или ближайшей пары комплексных корней (рисунок 4).

Рисунок 4. Корневые оценки качества систем автоматического регулирования.

Понятие степени устойчивости используют для синтеза систем автоматического регулирования.

Рассмотрим частотные оценки качества. При гармонических воздействиях качество систем автоматического регулирования принято оценивать по частотным характеристикам. Для этого используют следующие величины: показатель колебательности и частоту среза. Показатель колебательности – это отношение максимального значения амплитудно-частотной характеристики замкнутой системы к ее значению при частоте равной нулю. Частота среза – это частота при которой амплитудно-частотная характеристика равна единице. Косвенно она характеризует длительность переходного процесса.

Рассмотрим интегральные оценки качества. По кривой переходного процесса можно оценить качество процесса регулирования в данной системе. Косвенно оценить качество регулирования можно по площади между кривой переходного процесса и линией установившегося режима. В данном случае критерием качества будет определенный интеграл по времени от функции, характеризующей разницу между действительным и заданным значениями регулируемой величины.

21 Принципы построения ЛСУ температурой в ТОУ

22 Принципы построения ЛСУ давлением в ТОУ

23 Принципы построения ЛСУ расходом в ТОУ

24 Принципы построения ЛСУ уровнем в ТОУ

25 Системы автоматической защиты и блокировки

В общем виде структурная схема одноконтурной системы автоматического управления представлена на рисунке 1.1. Система автоматического управления состоит из объекта автоматизации и системы управления этим объектом. Благодаря определенному взаимодействию между объектом автоматизации и схемой управления система автоматизации в целом обеспечивает требуемый результат функционирования объекта, характеризующий его выходными параметрами и характеристиками.

Всякий технологический процесс характеризуется определенными физическими величинами (параметрами). Для рационального хода технологического процесса некоторые его параметры требуется поддерживать постоянными, а некоторые изменять по определенному закону. При работе объекта, управляемого системой автоматизации, в основном ставится задача поддержания рациональных условий протекания технологического процесса.

Рассмотрим основные принципы построения структур локальных автоматических систем регулирования. При автоматическом регулировании решаются, как правило, задачи трех типов.

К первому типу задач относится поддержание на заданном уровне одного или нескольких технологических параметров. Автоматические системы регулирования, решающие задачи такого типа, называют системами стабилизации. Примерами систем стабилизации могут служить системы регулирования температуры и влажности воздуха в установках кондиционирования воздуха, давления и температуры перегретого пара в котлоагрегатах, числа оборотов в паровых и газовых турбинах, электродвигателях и т.п..

Ко второму типу задач относится поддержание соответствия между двумя зависимыми или одной зависимой и другими независимыми величинами. Системы, регулирующие соотношения, получили название следящих автоматических систем, например автоматические системы регулирования соотношения «топливо - воздух» в процессе сжигания топлива или соотношения «расход пара – расход воды» при питании котлов водой и др.

К третьему типу задач относится изменение регулируемой величины во времени по определенному закону. Системы, решающие этот тип задач, называют системами программного регулирования. Характерным примером такого типа систем является система управления температурным режимом при термической обработке металла.

В последние годы широко применяют экстремальные (поисковые) автоматические системы, обеспечивающие максимальный положительный эффект функционирования технологического объекта при минимальных затратах сырья, энергии и т.п.

Совокупность технических средств, с помощью которых одну или несколько регулируемых величин без участия человека-оператора приводят в соответствие с их постоянными или изменяющимися по определенному закону заданными значениями путем выработки воздействия на регулируемые величины в результате сравнения их действительных значений с заданными, называют автоматической системой регулирования (АСР) или автоматической системой управления. Из определения следует, что в общем случае в состав простейшей АСР должны входить следующие элементы:

объект управления (ОУ), характеризующийся регулируемой величиной х n . x(t);

измерительное устройство (ИУ), измеряющее регулируемую величину и преобразующее ее в форму, удобную для дальнейшего преобразования либо для дистанционной передачи;

задающее устройство (ЗУ), в котором устанавливается сигнал уставки, определяющий заданное значение или закон изменения регулируемой величины;

сравнивающее устройство (СУ), в котором действительное значение регулируемой величины х сравнивается предписанным значением g(t) и,

выявляется отклонение (g(t)- x(t));

регулирующее устройство (РУ), вырабатывающее при поступлении на его вход отклонения (ε) регулирующее воздействие, которое необходимо подать на объект регулирования, чтобы устранить имеющееся отклонение регулируемой величины х от предписанного значения g(t);

исполнительный механизм (ИМ). На выходе РУ регулирующее воздействие имеет небольшую мощность и, выдается в форме, не пригодной в общем случае для непосредственного воздействия на объект регулирования. Требуется либо усиление регулирующего воздействия, либо преобразования в удобную форму х р. Для этого применяют специальные исполнительные механизмы, являющиеся исполнительными выходными устройствами регулирующего элемента;

регулирующий орган (РО). Исполнительные механизмы не могут непосредственно воздействовать на регулируемую величину. Поэтому объекты регулирования снабжают специальными регулирующими органами РО, через которые ИМ воздействует на регулируемую величину;

линии связи, через которые сигналы передаются от элемента к элементу в автоматической системе.

В качестве примера рассмотрим укрупненную структурную схему автоматического управления (рисунок 1.1). На схеме выходные параметры -результат работы управляемого объекта, обозначены х 1 , х 2 , ………х n . Кроме этих основных параметров, работа объектов автоматизации характеризуется рядом вспомогательными параметрами (у 1 , у 2 ,…….у n), которые должны контролироваться и регулироваться, например, поддерживаться постоянными.

Рисунок 1.1. Структурная схема автоматического управления

В процессе работы на объект управления поступают возмущающие воздействия f1 …. fn, вызывающие отклонения параметров х1…….хn от их рациональных значений. Информация о текущих значениях х тек и у тек поступает в систему управления и сравнивается с их предписанными значениями (уставками) g1…… gn, в результате чего система управления оказывает управляющие воздействия Е1…..Еn на объект, направленные на компенсацию отклонений текущих выходных параметров от заданных значений.

По структуре системы автоматического управления объектом автоматизации могут быть в частных случаях одноуровневыми централизованными, одноуровневыми децентрализованными и многоуровневыми. При этом одноуровневыми системами управления называют системы, в которых управление объектом осуществляется из одного пункта управления или из нескольких самостоятельных. Одноуровневые системы, в которых управление осуществляется из одного пункта управления, называют централизованными. Одноуровневые системы, в которых отдельные части сложного объекта управляются из самостоятельных пунктов управления, называют децентрализованными.

2.2 Функционально – технологические схемы автоматического управления

Функционально-технологическая схема – основной технический документ, определяющий функционально-блочную структуру приборов узлов и элементов системы автоматического управления, регулирования технологического процесса (операций) и контроля его параметров, а также оснащение объекта управления приборами и средствами автоматизации. Также схемы часто называют просто схемами автоматизации. Состав и правила выполнения диктуются требованиями стандартов (см. гл.1).

Функционально-технологическую схему автоматизации выполняют на одном чертеже, на котором условными обозначениями изображены технологическое оборудование, транспортные линии и трубопроводы, контрольно-измерительные приборы и средства автоматизации с указанием связей между ними. Вспомогательные устройства (источники питания, реле, автоматы, выключатели, предохранители и т.п.) на схемах не показывают.

Функциональные схемы автоматизации связаны с технологией производства и технологическим оборудованием, поэтому на схеме показывают размещение технологического оборудования упрощенно, без соблюдения масштаба, но с учетом действительной конфигурации.

Кроме технологического оборудования на функциональных схемах автоматизации в соответствии со стандартами упрощенно (двухлинейное) и условно (однолинейное) изображают транспортные линии различного назначения.

Как построение так и изучение схем технической документации надо вести в определенной последовательности.

Параметры технологического процесса, которые подлежат автоматическому контролю и регулированию;

Функциональную структуру управления;

Контуры регулирования;

Наличие защиты и аварийной сигнализации и принятую блокировку механизмов;

Организацию пунктов контроля и управления;

Технические средства автоматизации, с помощью которых решаются функции контроля, сигнализации, автоматического регулирования и управления.

Для этого, необходимо знать принципы построения систем автоматического управления технологического контроля и условные изображения технологического оборудования, трубопроводов, приборов и средств автоматизации, функциональных связей между отдельными приборами и средствами автоматизации и иметь представление о характере технологического процесса и взаимодействии отдельных установок и агрегатов технологического оборудования.

На функциональной схеме линии коммуникации и трубопроводы чаще показывают в однолинейном изображении. Обозначение транспортируемой среды может быть как цифровым, так и буквенно-цифровым. (Например: 1.1 или В1). Первая цифра или буква указывает вид транспортируемой среды, а последующая цифра – ее назначение. Цифровые или буквенно-цифровые обозначения представляют на полках линий-выносок или над транспортной линией (трубопровода), а в необходимых случаях – в разрывах транспортной линий (при этом принятые обозначения поясняют на чертежах или в текстовых документах (см.таблицу 1.1.). На технологических объектах показывают ту регулирующую и запорную арматуру, технологические аппараты, которые непосредственно участвуют в контроле и управлении процессом, а также отборные (датчики), запорные и регулирующие органы, необходимые для определения относительного расположения мест отбора (мест установки датчиков), также измерения или контроля параметров (см. табл.1.2).

Комплектные устройства (машины централизованного контроля, управляющие машины, полукомплекты телемеханики и т.п.) обозначают прямоугольником произвольных размеров с указанием внутри прямоугольника типа устройства (по документации завода - изготовителя).

В отдельных случаях некоторые элементы технологического оборудования также изображают на схемах в виде прямоугольников с указанием наименования этих элементов. При этом около датчиков, отборных, приемных и других, подобных по назначению устройств указывают наименование того технологического оборудования, к которому они относятся.

Таблица 1.1. Обозначение транспортных линий трубопроводов по ГОСТ 14.202 – 69

Содержимое транспортных линий (трубопроводов) Условное Цифровое и буквенное обозначение Обозначение в цвете
Жидкость или газ (общее) - Красный, желтый
Вода Пар Воздух Кислород - 1.1 - 1.0 - - 2.1 - 2.0 - - 3.1 - 3.6 - - 3 - 7 - Зеленый Розовый Голубой Синий
Инертные газы - 5.1-5.0 - Фиолетовый
Аммиак Кислота (окислитель) Щелочь Масло Жидкое горючее - 11 - 11 - - 3 - 7 - - 7.1-7.0 - -8.4 – 14 – - 8.6 - Серый Оливковый Серо – коричневый Коричневый Желтый
Горючие и взрывоопасные газы -16 – 16 - Оранжевый
Водопровод ВО – В9 -
Противопожарный трубопровод В2 Светло - серый
Канализация КО – К12 -
Теплопровод ТО – Т8 -

Таблица 1.2. Условные обозначения технологической арматуры

Наименование Обозначение по ГОСТ 14.202 - 69
Вентиль запорный проходной (задвижка)
Вентиль с электрическим приводом
Вентиль трехходовой
Клапан предохранительный
Затвор поворотный (заслонка, шибер)
Привод исполнительный мембранный
Таблица 1.3. Выходные электрические коммутирующие элементы
Наименование Обозначение по ГОСТ 2.755 - 87
Контакт для коммутации сильноточной цепи (контакт контактора)
Контакт замыкающий
Контакт размыкающий

Для облегчения чтения схем на трубопроводах и других транспортных линиях проставляют стрелки, указывающие направление движения вещества.

В функционально-технологической схеме, а также у изображения трубопровода, по которому вещество уходит из данной системы, делается соответствующая надпись, например: «Из цеха абсорбции», «От насосов», «В схему полимеризации».

Рисунок 1.2. Изображение датчиков и отборных устройств (фрагмент)

Условные графические обозначения средств автоматизации приведены в таблицах 1.2., 1.3., 1.4.. Условные графические обозначения электроаппаратуры, применяемые в функциональных схемах автоматизации, следует изображать в соответствии со стандартами (табл. 1.3.). При отсутствии стандартных условных обозначений каких – либо автоматических устройств следует принять свои обозначения и пояснить их надписью на схеме. Толщина линий этих обозначений должна быть 0,5 – 0,6 мм, кроме горизонтальной разделительной линии в условном изображении прибора, устанавливаемого на щите, толщина, которой 0,2 – 0,3 мм.

Отборное устройство для всех постоянно подключенных приборов не имеет специального обозначения, а представляет собой тонкую сплошную линию, соединяющую технологический трубопровод или аппарат с прибором (рис. 1.2. приборы 2 и 3а). При необходимости указания точного места расположения отборного устройства или точки измерения (внутри графического обозначения технологического аппарата) в конце жирно изображают окружность диаметром 2 мм (рис. 1.2 приборы 1 и 4а).

Таблица 2.4. Условные графические обозначения средств автоматизации и приборов

Наименование Условное обозначение по ГОСТ 21.404 - 85
Первичный измерительный преобразователь (датчик) или прибор, устанавливаемый по месту (на технологической линии, аппарате, стене, полу, колонне, металлоконструкции). Базовое Допускаемое
Прибор, устанавливаемый на щите, пульте Базовое Допускаемое
Отборное устройство без постоянного подключения прибора
Исполнительный механизм
Выключатель путевой
Звонок электрический, сирена, гудок
Электронагреватель: а) сопротивления, в) индукционный
Прибор регистрирующий
Лампа накаливания, газоразрядная (сигнальная)
Машина электрическая трехфазная (М – двигатель, G - генератор)
Машина электрическая постоянного тока (двигатель М, генератор G)

Для получения полного (свободно читаемого) обозначения прибора или другого средства автоматизации в его условно-графическое изображение в виде круга или овала вписывают буквенное условное обозначение, которое и определяет назначение, выполняемые функции, характеристики и параметры работы. При этом месторасположение буквы определяет ее значение. Таким образом, буквы, приведенные в таблице 1.5 – это основные параметры и функции, а буквы, приведенные в таблице 1.6 - уточняют функцию, параметр.

Таблица 1.5. Обозначение основных измеряемых параметров в схемах автоматизации

Измеряемый параметр Обозначение
Плотность D
Любая электрическая величина. Для конкретизации измеряемой электрической величины справа от условного графического изображения прибора необходимо дать ее наименование, например, напряжение, сила тока, мощность и т.п. E U, I, P
Расход F
Размер, положение, перемещение G
Время, временная программа K
Уровень L
Влажность M
Давление, вакуум P
Состав, концентрация и т.п. Q
Скорость, частота S
Температура T
Вязкость V
Масса W
Несколько разнородных измеряемых величин U

Для обозначения ручного управления используют букву H. Для обозначения величин, не предусмотренных стандартом, могут быть использованы резервные буквы: A, B, C, I, N, O, Y, Z (буква X - не рекомендуется). Использованные резервные буквы должны быть расшифрованы надписью на свободном поле схемы.

Ниже приведены обозначения уточняющих значений измеряемых величин.

Таблица 1.6. Дополнительные буквенные обозначения

Букву, служащую для уточнения измеряемой величины, ставят после буквы, обозначающей измеряемую величину, например P,D, - разность (перепад) давлений.

Функции, выполняемые приборами по отображению информации, обозначают латинскими буквами (см. таблицу 2.7).

Таблица 1.7. Буквенные обозначение функции

Дополнительно могут быть использованы обозначения буквами E, G, V.

Все перечисленные буквенные обозначения проставляют в верхней части окружности, обозначающей прибор (устройство).

Если для обозначения одного прибора используется несколько букв, то порядок их расположения после первой, обозначающей измеряемую величину, должен быть, например: TIR – прибор измерения и регистрации температуры, PR – прибор для регистрации давления.

При обозначении устройств, выполненных в виде отдельных блоков и предназначенных для ручных операции, на первом месте ставят букву H.

Для примера на рис. 1.2 приведена схема автоматизации с использованием регистрирующих приборов для температуры и перепада давлений, где для формирования условного обозначения прибора (комплекта), в верхней части окружности указывают функциональное назначение, а в нижней части окружности располагают позиционное обозначение его (буквенно – цифровое или цифровое – 1, 2, 4а, 4б, 3а, 3б). Таким образом, все элементы одного комплекта, т.е. одной функциональной группы приборов (первичный, промежуточный и передающий измерительные преобразователи, измерительный прибор, регулирующий прибор, исполнительный механизм, регулирующий орган), обозначают одной и той же цифрой. При этом цифру 1 присваивают первому (слева) комплекту, цифру 2 - второму и т.д.

Чтобы различить элементы одного комплекта, рядом с цифрой помещают буквенный индекс (буквы З и О, начертание которых похоже на начертание цифр, применять не рекомендуется): у первичного преобразователя (чувствительного элемента) – индекс «а», у передающего преобразователя – «б», у измерительного прибора – «в», и т.д. Таким образом, для одного комплекта полное обозначение первичного измерительного преобразователя будет 1а, передающего измерительного преобразователя 1б, измерительного (вторичного) прибора 1в, и т.д. при этом высота цифры равна 3,5 мм, высота буквы 2,5 мм.

Схема является основным документом, поясняющим принцип действия и взаимодействия различных элементов, устройств или в целом систем автоматического управления. Наиболее часто используют принципиальные, функциональные структурные (функциональные) и алгоритмические структурные (структурные) типы схем. Кроме них при проектировании, монтаже, наладке и эксплуатации САУ применяют схемы соединения и подключения (монтажные).

ПРИНЦИПИАЛЬНЫЕ, ФУНКЦИОНАЛЬНЫЕ И СТРУКТУРНЫЕ СХЕМЫ

На принципиальной схеме все элементы системы изображают в соответствии с условными обозначениями во взаимосвязи между собой. Из принципиальной схемы должен быть ясен принцип ее действия и физическая природа происходящих в ней процессов. Принципиальные схемы могут быть электрическими, гидравлическими, пневматическими, кинематическими и комбинированными. На рисунке 1.19 в качестве примера представлены фрагменты принципиальной электрической и принципиальной гидравлической схем.

Элементы автоматики на принципиальных схемах следует обозначать в соответствии со стандартом. Изображение элементов должно соответствовать выключенному состоянию (обесточенному, при отсутствии избыточного давления и т.д.) всех цепей схемы и отсутствию внешних воздействий. Схема должна быть логи-

Рис. 1.19.

а - электрической, б - гидравлической

чески последовательной и читаться слева направо или сверху вниз. Каждому элементу принципиальной схемы присваивают буквенно-цифровое позиционное обозначение. Буквенное обозначение обычно представляет собой сокращенное наименование элемента, а цифровое в порядке возрастания и в определенной последовательности условно показывает нумерацию элемента, считая слева направо или сверху вниз. Для сложных схем, как правило, расшифровывают сокращенные буквенные и цифровые обозначения.

Функциональные структурные схемы отражают взаимодействие устройств, блоков, узлов и элементов автоматики в процессе их работы. Графически отдельные устройства автоматики изображают прямоугольниками, соответствующими направлению прохождения сигнала. Внутреннее содержание каждого блока не конкретизируют. Функциональное назначение блоков обозначают буквенными символами. На рисунке 1.20 в качестве примера представлена функциональная схема САУ температурой воздуха в парнике, где ОУ- объект управления (парник), ВЭ - воспринимающий элемент (датчик температуры), ПЭ - преобразующий


Рис. 1.20. Функциональная схема САУ температурой воздуха в парнике элемент (усилитель с реле на выходе), РО- регулирующий орган (электронагреватель), у -управляемая величина (температура), g-задающее воздействие (требуемая температура);/-возмущающее воздействие (влияние внешних факторов на температуру воздуха в парнике).

Алгоритмические структурные схемы показывают взаимосвязь составных частей автоматической системы и характеризуют их динамические свойства. Эти схемы разрабатывают на основе функциональных или принципиальных схем автоматики. Алгоритмическая структурная схема - наиболее удобная графическая форма представления САУ в процессе исследования ее динамических свойств. В этой схеме не учитывают физическую природу воздействий и особенности конкретной аппаратуры, но отображают лишь математическую модель процесса управления.

На структурной схеме, как и на функциональной, элементы УУ и ОУ изображают в виде прямоугольников. При этом какое-либо устройство может быть представлено несколькими звеньями (прямоугольниками) и, наоборот, несколько однотипных устройств могут быть изображены как одно звено.

Разделение САУ на элементарные звенья направленного действия выполняют в зависимости от вида математического уравнения, связывающего выходную величину с входной для каждого звена. Внутри звена (прямоугольника) указывают математическую зависимость между входной и выходной величинами. Эта зависимость может быть представлена либо формулой, либо графиком, либо таблицей. Аналогично функциональной схеме связи между звеньями изображают в виде стрелок, указывающих направление и точки приложения воздействующих величин.

Структурная схема САУ температурой воздуха в парнике представлена на рисунке 1.21. Общий вид этой схемы совпадает с функциональной схемой (см. рис. 1.20), однако внутри прямоугольников содержатся функции или графики, связывающие выходные величины каждого элемента с входными.

В качестве примера рассмотрим принцип действия принципиальной электрической схемы САУ температурой теплоносителя в


Рис. 1.21.

Рис. 1.22.

/-заслонка; 2- ИМ; 3 ~усилитель

шахтной зерносушилке (рис. 1.22) и составим для нее функциональную схему. Требуемая температура теплоносителя в зерносушилке поддерживается при помощи заслонки 7, которая, поворачиваясь, изменяет соотношение притоков горячего воздуха Q r , поступающего из топки, и холодного Q x , забираемого из атмосферы. Температуру внутри зерносушилки измеряет термодатчик R, включенный в одно их плеч измерительного моста. Заданное значение управляемой величины g (температуры) устанавливают, перемещая движок резистора - задатчика R1. Поскольку сигнал выхода с измерительного моста малой мощности, то для управления реверсивным электродвигателем 2 (ИМ) используют усилитель 3.

Когда температура теплоносителя внутри зерносушилки отклоняется от заданной, на выходе моста появляется сигнал разбаланса, который через усилитель 3 и реле К1 или К2 поступает в электродвигатель 2, включая его. От двигателя приводится в действие заслонка 7, перемещающаяся в ту или иную сторону в зависимости от знака сигнала.

Вследствие инерционности термодатчика R, и его удаленности от заслонки 7 процесс управления может продолжаться бесконечно, т. е. новый равновесный режим в системе не установится. Действительно, когда заслонка займет новое равновесное положение, температура термодатчика еще некоторое время остается прежней, вследствие чего исполнительный механизм продолжит перемещать заслонку. Далее температура в месте установки термодатчика сначала сравняется с заданной, а затем отклонится от нее в противоположную сторону, т. е. примет значение с обратным знаком. Иными словами, в системе возникнут периодические колебания, называемые автоколебаниями. Автоколебания управляемой величины (температуры) в данной системе возникают вследствие того, что двигатель останавливается не в момент достижения заслонкой требуемого положения, а с некоторым запаздыванием.

Для устранения автоколебаний или уменьшения их амплитуды применяют обратную связь (ОС), которая позволяет остановить двигатель до того, как температура теплоносителя достигнет заданного значения, поскольку после прекращения перемещения заслонки температура объекта и термодатчика приближается к заданному значению.

Обратная связь осуществляется с помощью переменного резистора Ло. с, ползунок которого механически связан с ротором электродвигателя 2 и перемещается одновременно с ним. Очевидно, что равновесие в системе наступит в тот момент, когда приращение сопротивления Л ос, возникающее вследствие передвижения ползунка, и приращение сопротивления R„ вызванное изменением температуры теплоносителя, станут равны между собой (АД, с = ДЛ,). Таким образом, электродвигатель 2 в данной системе останавливается и переходный процесс полностью прекращается в тот момент, когда отклонение температуры станет меньше зоны нечувствительности регулятора.

На функциональной схеме (рис. 1.23) зерносушилка представляет собой объект управления (030, термодатчик - воспринимающий орган (50), измерительный мост - сравнивающий элемент (СО), усилитель - усилительный элемент (УЭ ), электродвигатель - исполнительный механизм (ИМ), заслонка - регулирующий орган (РО), между валом ИМ и ползунком потенциометра - обратная связь (ОС). Здесь же/- возмущающее воздействие (температура наружного воздуха, влажность и начальная температура зерна), g- задающее воздействие (требуемая температура сушки), у - управляемая величина (фактическая температура теплоносителя), и - управляющее воздействие (теплота, поступающая в зерносушилку с теплоносителем).


Рис. 1.23.

СХЕМЫ СОЕДИНЕНИЙ ЩИТОВ, ПУЛЬТОВ УПРАВЛЕНИЯ, ВНЕШНИХ СОЕДИНЕНИЙ И ПОДКЛЮЧЕНИЙ

Схемы соединений - это схемы, на которых изображают соединения составных частей устройства или внешние соединения между отдельными устройствами. Схемы для приборов, устанавливаемых в щитах или пультах управления, разрабатывают на основе функциональных схем, принципиальных электрических схем, схем питания, а также общих видов щитов и пультов.

Общие правила выполнения схем соединений следующие:

схемы соединений разрабатывают на один щит, пульт, станцию управления;

все типы аппаратов, приборов и арматуры, предусмотренные принципиальной электрической схемой, должны быть полностью отражены на схеме соединений;

позиционное обозначение приборов и средств автоматизации и маркировку участков цепей, принятые на принципиальной электрической схеме, необходимо сохранять в схеме соединений.

Применяют три способа составления схем соединений: графический, адресный и табличный. Для адресного и табличного способа, кроме перечисленных правил, следует соблюдать еще несколько:

приборы и аппараты на схемах соединений изображают упрощенно без соблюдения масштаба в виде прямоугольников, над которыми помещают окружность, разделенную горизонтальной чертой. Цифры над чертой указывают порядковый номер устройства (рис. 1.24, цифра 8); номера присваивают попанельно слева направо и сверху вниз), а под чертой - позиционное обозначение этого изделия (например, КТЗ)

при необходимости показывают внутреннюю схему аппаратов (рис. 1.24);

Рис. 1.24.

для нескольких реле, расположенных в одном ряду, внутреннюю схему показывают только один раз, если она у них одинаковая;

выводные зажимы приборов условно изображают окружностями, внутри которых указывают их заводскую маркировку (например, 1...8 на рис. 1.24). Если у выводных зажимов аппаратов заводской маркировки нет, то их маркируют условно арабскими цифрами и указывают это в поясняющей записи;

платам, на которых размещены диоды, триоды, резисторы и т. п., присваивают только порядковый номер (его проставляют в окружности под чертой);

позиционное обозначение элементов помещают в непосредственной близости от их условного графического изображения (рис. 1.25);

Рис. 1.2

если приборы и средства автоматизации располагаются на нескольких элементах конструкции щита или пульта (крышке, задней панели, дверце), то необходимо выполнить развертку этих конструкций в одну плоскость, соблюдая взаимное размещение приборов и средств автоматизации.

Графический способ заключается в том, что на чертеже условными линиями показывают все соединения между элементами аппаратов (рис. 1.26). Этот способ применяют только для щитов и пультов, относительно мало насыщенных аппаратурой. Схемы трубных проводок выполняют только графическим способом. Если на одном щите или пульте прокладывают трубы из разного материала (стальные, медные, пластмассовые), то и условные обозначения используют различные: сплошные линии, штриховые, штриховые-пунктирные с двумя точками и т. д.

Адресный («встречный») способ состоит в том, что линии связи между отдельными элементами аппаратов, установленных на щите или пульте, не изображают. Вместо этого у места присоединения провода на каждом аппарате или элементе проставляют цифровой или буквенно-цифровой адрес того аппарата или элемента, с которым он должен быть электрически связан (позиционное обозначение соответствует принципиальной электрической схеме или порядковому номеру изделия). При таком изображении


Рис. 1.26.


Рис. 1.27.

схемы чертеж не загромождается линиями связи и легко читается (рис. 1.27). Адресный способ выполнения схем соединений - основной и наиболее распространенный.

Табличный способ применяют в двух вариантах. Для первого составляют монтажную таблицу, где указывают номера каждой электрической цепи. В свою очередь, для каждой цепи последовательно перечисляют условные буквенно-цифровые обозначения всех приборов, аппаратов и их контактов, посредством которых эти цепи соединены (табл. 1.1). Так, для цепи 7запись обозначает, что зажим 6 прибора КМ1 соединяется с зажимом 4 прибора КМ2 , который, в свою очередь, должен быть соединен с зажимом 3 устройства КТ4.

1.1. Пример таблицы соединений

Номер цепи

Соединение

КМ 1 КМ2 КТ 4 6 4 3

КМ 4 XT 1 2 293

XTI HL1 КН2 XT 2 328 1 12 307

Второй вариант заполнения таблицы соединений отличается от первого тем, что в таблицу вписывают проводники по возрастанию номеров маркировки цепей принудительных электрических схем (табл. 1.2). Направление прокладки проводов, как и для первого варианта, записывают в виде дроби. Для более четкого распознавания проводников принято использовать дополнительные обозначения. Например, перемычку, выполняемую в аппарате, обозначают буквой «п».

1.2. Пример таблицы соединения проводов

Схемы подключений служат рабочими чертежами, по которым выполняют монтаж аппаратуры автоматики, поэтому их еще называют монтажными. Схемы, показывающие внешнее подключение аппаратов, установок, щитов, пультов и т. п., выполняют на основе функциональных и принципиальных схем питания, спецификации приборов и оборудования, а также чертежей производственных помещений с расположением технологического оборудования и трубопроводов.

Схемы подключений используют при монтаже проводов, при помощи которых установку, прибор, аппарат подключают к источникам питания, щитам, пультам и т. п.

На практике применяют два способа составления схем подключений: графический и табличный. Наиболее распространен графический.

На схемах подключений при помощи условных графических обозначений показывают: отборные устройства и первичные преобразователи; щиты, пульты и местные пункты управления, контроля, сигнализации и измерения; внещитовые приборы и средства автоматизации; соединительные, протяжные и свободные коробки; электропровода и кабели, проложенные вне щитов; узлы присоединения электропроводов к приборам, аппаратам, коробкам; запорную аппаратуру и элементы для соединений и ответвлений; коммутационные зажимы, расположенные вне щитов, защитное заземление. Шкафы, пульты, отдельные приборы и аппараты условно изображают в виде прямоугольников или кружков, внутри которых помещают соответствующие подписи.

Связи одного назначения на схемах подключений показывают сплошной линией и лишь в местах присоединения к приборам, исполнительным механизмам и другим аппаратам провода разделяют с целью маркировки. На линиях связи, обозначающих провода или кабели, указывают номер провода (подключение), марку, сечение и длину проводов и кабелей (если проводка выполнена в трубе, то необходимо также привести характеристику трубы). Провода подключений и кабели изображают линиями толщиной 0,4.. .1 мм.

Схемы подключений выполняют без соблюдения масштаба в виде, удобном для пользователя. Иногда схемы подключений представляют в виде таблиц, которые выполняют отдельно на каждую секцию (или панель) щита управления (табл. 1.3).

1.3. Пример таблицы подключений

Кабель, провод

Направление проводки

Читайте также: