Как сделать эксцентрическое зажим. Эксцентриковые зажимы. Расчёт силы зажима

Эксцентриковые зажимные устройства являются быстродействующими и широко применяются в крупносерийном и массовом производствах при небольших силах зажима (рис. 2). Для определения основных размеров конструкции эксцентрика необходимо иметь: допуск на базовую поверхность обрабатываемой детали в процессе ее установки; угол поворота эксцентрика β п от начального положения; силу, приложенную на конце рукоятки Q рук, и длину рукоятки L рук.

Рис. 2. Элементы кругового эксцентрика, применяемые при расчетах

Сила зажима, развиваемая эксцентриком,

,

где Q рук – сила, приложенная на рукоятке эксцентрика, Н; е – эксцентриситет, мм; f т.п – коэффициент трения на поверхности эксцентрика; f т.о – коэффициет трения на поверхности оси, f т.о = 0,12 ... 0,15; г о – радиус оси, мм.

Ход эксцентрика

.

Наиболее удобный для рабочего угол поворота β п = 90° ... 120°. Ход эксцентрика можно определить по соотношению . Наружный диаметр эксцентрика определяют из условия D ≥ 20 ∙ е, а радиус оси r о выбирают в зависимости от ширины рабочей части эксцентрика по конструктивным соображениям или рассчитывают по формуле.

Самоторможение эксцентрикового зажима должно соответствовать условию D/е ≥ 14, где отношение D/е является характеристикой эксцентрика.

Все расчетные параметры круглого эксцентрика необходимо принимать с учетом ГОСТ 9061–68*, где D эк = 32 ... 70 мм, е = 1,7 ... 3,5 мм.

Пример. Определить конструктивные элементы круглого эксцентрика для зажима заготовки по размерам рабочего чертежа и рассчитать силу зажима обрабатываемой заготовки.

Решение. Определим допуск базовой поверхности обрабатываемой; заготовки, где δ = 0,34 мм. Установим ход эксцентрика

Принимаем эксцентриситет е = 2 мм.

Определим диаметр круглого эксцентрика

D ≥ 20 ∙ е = 20 ∙ 2 = 40 мм.

Определим силу зажима эксцентриком

Длину рукоятки эксцентрика L рук определим из условия

L рук = 2,5 ∙ D = 2,5 ∙ 40 = 100 мм.

Угол поворота принимаем β п = 90°. Коэффициент трения на поверхности эксцентрика f т.п = 0,12. Коэффициент трения на поверхности оси f т.о = 0,15. Радиус оси принимаем конструктивно г о = 6 мм. Самоторможение эксцентрикового зажима проверяем по условию D/е ≥ 14 (где 40/2 = 20). Самоторможение удовлетворяет нашему условию.

Исходными данными для расчета основных размеров круглого эксцентрика (рис. 8.3) являются: δ - допуск на размер заготовки от ее установочной базы до места приложения силы закрепления, мм; α- угол поворота эксцентрика от нулевого (начального) положения; Q - сила закрепления заготовки, Н.

Рис. 8.3. Эксцентриковые зажимы:

А - дисковый эксцентрик, б -эксцентрик с Г-образным прихватом

Если угол поворота эксцентрика не ограничен, то

2е =s 1 +d+s 2 +

где s 1 - зазор для свободного ввода заготовки под эксцентрик; s 2 - запас хода эксцентрика, предохраняющий его от перехода через мертвую точку (учитывает износ эксцентрика); J - жесткость зажимного устройства, Н/мм.

Последний член формулы характеризует увеличение расстояния между эксцентриком и заготовкой в результате упругой деформации зажимной системы. При s 1 = 0,2÷0,4 мм и s 2 = 0,4÷0,6 мм

е = +(0,3÷0,5) мм

Если угол поворота α значительно меньше 180°,

е = (8.4)

Радиус цапфы эксцентрика (мм) найдем, принимая ширину d ;

r = Q /2 см, (8.5)

где σ см - допускаемое напряжение на смятие (15-20 МПа).

При b = 2r

Радиус эксцентрика R находим из условий самоторможения. Из схемы действующих на эксцентрик сил (рис. 8.4, а) следует, что равнодействующая Т реакции Q и силы трения F должна быть равна реакции со стороны цапфы, проходящей касательно, кругу трения радиуса ρ, и направлено противоположно ей:

где j = угол трения покоя.

При е ≤ р R min = е + r + Δ, где Δ - толщина перемычки (рис. 8.4, б).

Рис. 8.4. Схема для силового расчёта эксцентриков

Радиус ρ круга трения определяем из равенства ρ = f"r, где f " -коэффициент трения покоя в цапфе. Величины j и f " следует брать по наименьшему пределу. Для полусухих поверхностей можно принимать j = 8° и f " = 0,12÷0,15.

Угол поворота α 1 (см. рис. 8.4, а )для наименее выгодного положения эксцентрика найдем по формуле α 1 = 90° - j.

Ширину рабочей части эксцентрика В определим из формулы

σ=0,565

где σ-допускаемое напряжение в месте контакта эксцентрика с заготовкой. Для закаленной стали можно принимать σ = 800÷1200 МПа; Е 1 E 2 - модули упругости соответственно материалов эксцентрика и соприкасающегося с ним элемента (промежуточной детали или заготовки), МПа; µ 1 , µ 2 - коэффициенты Пуассона для материалов эксцентрика и соприкасающегося с ним элемента.

При E 1 =E 2 =E и µ 1 =µ 2 = 0,25 получим

откуда (при R в мм)

B= 0,17 мм. (8.6)

Размеры эксцентрика е, r, R и В согласовывают с ГОСТом.

Для установления зависимости между силой закрепления Q и моментом на рукоятке эксцентрика в конце закрепления заготовки воспользуемся схемой, показанной на рис. 8.4, б. В процессе закрепления на эксцентрик действуют три силы: сила на рукоятке N, реакция заготовки Т и реакция цапфы S. Под действием этих сил система находится вравновесии. Реакция Т представляет собой равнодействующую силы Q исилы трения F. Сумма моментов всех действующих сил относительно оси поворота эксцентрика



Nl - Qe sin α" - fQ (R - е cos α") - Sρ = 0,

где f - коэффициент трения между эксцентриком и заготовкой.

Сила S мало отличается по величине от нормальной силы Q. Приняв S» Q, получим момент на рукоятке эксцентрика

Nl = Q [fR + ρ + e (sin α" +f cos α")].

Для упрощения полученного выражения примем:

1) fR = tg jR »sin jR (при j= 6° погрешность меньше 1 %);

2) выражение sin α" +f cos α" заменим sin (α" +j) (погрешность 1 %). После подстановок получим

Nl=Q (8.7)

Учитывая выражение для R, получим

Nl = eQ. (8.8)

По этой формуле момент Nl находят с точностью до 10 %.

Перемещение точки касания эксцентрика с плоскостью при его повороте на угол α от начального положения (рис. 8.5, a)

х = е - с = е - е cos α = е (1 - cos α).

Рис. 8.5. Схемы для расчета перемещения точки контакта эксцентрика с плоскостью при его повороте

На рис. 8.5 б показано изменение х от α. Учитывая, что

x =s 1 +d+ ,

cos α = 1- ; α "=180 o -α

Подставляя найденное значение α " в формулу (8.8), можно выразить момент на рукоятке эксцентрика через исходные величины.

Расчёт клиновых зажимов

Клиновые зажимыприменяют в качестве промежуточного звена в сложных зажимных системах. Они просты в изготовлении, компактны, легко размещаются в приспособлении, позволяют увеличивать и изменять направление передаваемой силы. При определенных углах клиновой механизм обладает свойствами самоторможения. Для наиболее распространенного в приспособлениях односкосного клина (рис. 8.6, а) при действии сил под прямым углом имеем следующую зависимость, полученную из силового многоугольника:



. . (8.9)

При знаке минус в формуле имеем зависимость для открепления клина. Самоторможение происходит при α < φ 1 + φ 2 . Если φ 1 = φ 2 .= φ 3 = φ. то зависимость упрощается:

Рис. 8.6. Действие сил в клиновом механизме:

а - с углом 90°; б - с углом более 90°

При передаче сил под углом β > 90° (рис. 8.6, б )зависимость между Pи Q из силового многоугольника имеет вид (при 90 + α > β)

Если угол трения постоянен и равен φ, то

.

Расчёт рычажных зажимов

Рычажные зажимыаналогично клиновым применяют в сочетании с другими элементарными зажимами, образуя более сложные зажимные системы. С помощью рычага изменяют величину и направление передаваемой силы, осуществляют одновременное и равномерное закрепление заготовки в двух местах.

Зажимы эксцентриковые просты в изготовлении по этой причине нашли широкое применение в станочных приспособлениях. Применение эксцентриковых зажимов позволяет значительно сократить время на зажим заготовки но усилие зажима уступает резьбовым.

Эксцентриковые зажимы выполняются в сочетании с прихватами и без них.

Рассмотрим эксцентриковый зажим с прихватом.


Эксцентриковые зажимы не могут работать при значительных отклонениях допуска (±δ) заготовки. При больших отклонениях допуска зажим требует постоянной регулировки винтом 1.

Расчёт эксцентрика

Материалом применяемом для изготовления эксцентрика являются У7А, У8А с термообработкой до HR с 50....55ед, сталь 20Х с цементацией на глубину 0,8... 1,2 С закалкой HR c 55...60ед.

Рассмотрим схему эксцентрика. Линия KN делит эксцентрик на дв? симметричные половины состоящие как бы из 2 х клиньев, навернутых на «начальную окружность».


Ось вращения эксцентрика смещена относительно его геометрической оси на величину эксцентриситета «е».

Для зажима обычно используется участок Nm нижнего клина.

Рассматривая механизм как комбинированный состоящий из рычага L и клина с трением на двух поверхностях на оси и точки «m» (точка зажима), получим силовую зависимость для расчёта усилия зажима.


где Q - усилие зажима

Р - усилие на рукоятке

L - плечо рукоятки

r -расстояние от оси вращения эксцентрика до точки соприкосновения с

заготовкой

α - угол подъёма кривой

α 1 - угол трения между эксцентриком и заготовкой

α 2 - угол трения на оси эксцентрика

Во избежание отхода эксцентрика во время работы необходимо соблюдать условие самоторможение эксцентрика

где α - угол трения скольжения в точке касания заготовки ø - коэффициент трения

Для приближённых расчётов Q - 12Р Рассмотрим схему двухстороннего зажима с эксцентриком



Клиновые зажимы

Клиновые зажимные устройства нашли широкое применение в станочных приспособлениях. Основным элементом их является одно, двух и трёхскосые клинья. Использование таких элементов обусловлено простотой и компактностью конструкций, быстротой действия и надёжностью в работе, возможностью использования их в качестве зажимного элемента, действующего непосредственно на закрепляемую заготовку, так и качестве промежуточного звена, например, звена-усилителя в других зажимных устройствах. Обычно используются самотормозящиеся клинья. Условие самоторможения односкосого клина выражается зависимостью

α > 2ρ

где α - угол клина



ρ - угол трения на поверхностях Г и Н контакта клина с сопрягаемыми деталями.

Самоторможение обеспечивается при угле α = 12°, однако для предотвращения того чтобы вибрации и колебания нагрузки в процессе использования зажима не ослабли крепления заготовки, часто применяют клинья с углом α <12°.

Вследствие того, что уменьшение угла приводит к усилению

самотормозящих свойств клина, необходимо при конструировании привода к клиновому механизму предусматривать устройства, облегчающие вывод клина из рабочего состояния, так как освободить нагруженный клин труднее, чем вывести его в рабочее состояние.


Этого можно достичь путём соединения штока приводного механизма с клином. При движении штока 1 влево он проходит путь «1» в холостую, а затем ударяясь в штифт 2, запрессованный в клин 3, выталкивает последний. При обратном ходе штока так же ударом в штифт заталкивает клин в рабочее положение. Это следует учитывать в случаях, когда клиновой механизм приводится в действие пневмо или гидроприводом. Тогда для обеспечения надёжности работы механизма следует создавать разное давление жидкости или сжатого воздуха с разных сторон поршня привода. Это различие при использовании пневмоприводов может быть достигнуто применением редукционного клапана в одной из трубок, подводящих воздух или жидкость к цилиндру. В случаях, когда самоторможение не требуется, целесообразно применять ролики на поверхностях контакта клина с сопряжёнными деталями приспособления, тем самым облегчается ввод клина в исходное положение. В этих случаях обязательно стопорение клина.

В приспособлениях применяются два типа эксцентриковых механизмов:

1. Круговые эксцентрики.

2. Криволинейные эксцентрики.

Тип эксцентрика определяется формой кривой на рабочем участке.

Рабочая поверхность круговых эксцентриков – окружность постоянного диаметра со смещенной осью вращения. Расстояние между центром окружности и осью вращения эксцентрика называется эксцентриситетом (е ).

Рассмотрим схему кругового эксцентрика (Рис.5.19). Линия, проходящая через центр окружности О 1 и центр вращения О 2 кругового эксцентрика, делит его на два симметричных участка. Каждый из них это клин, расположенный на окружности, описанной из центра вращения эксцентрика. Угол подъема эксцентрика α (угол между зажимаемой поверхностью и нормалью к радиусу вращения) образуют радиус окружности эксцентрика R и радиус вращения r , проведенные из своих центров в точку касания с деталью.

Угол подъема рабочей поверхности эксцентрика определяется зависимостью

Эксцентриситет; - угол поворота эксцентрика.

Рисунок 5.19 – Расчетная схема эксцентрика

,

где - зазор для свободного ввода заготовки под эксцентрик (S 1 = 0,2 …0,4 мм); T – допуск на размер заготовки в направлении зажима; - запас хода эксцентрика, предохраняющий его от перехода через мертвую точку ( = 0,4…0, 6 мм); y – деформация в зоне контакта;

где Q –усилие в месте контакта эксцентрика; - жесткость зажимного устройства,

К недостаткам круговых эксцентриков относится изменение угла подъема α при повороте эксцентрика (следовательно, и усилия зажима). На рисунке 5.20 приведен профиль развертки рабочей поверхности эксцентрика при его повороте на угол ρ . В начальной стадии при ρ = 0° угол подъема α = 0°. При дальнейшем повороте эксцентрика угол α увеличивается, достигая максимума (α Мах) при ρ = 90°. Дальнейший поворот приводит к уменьшению угла α , и при ρ = 180° угол подъема снова равен нулю α =0°

Рис. 5.20 – Развертка эксцентрика.

Уравнения сил в круговом эксцентрике с достаточной для практических расчетов точностью можно записать, по аналогии с расчетом усилий плоского односкосого клина с углом в точке контакта. Тогда усилие на рукоятке длиной можно определить по формуле

,

где l – расстояние от оси вращения эксцентрика до точки приложения усилия W ; r – расстояние от оси вращения до точки контакта (Q ); - угол трения между эксцентриком и заготовкой; - угол трения на оси вращения эксцентрика.


Самоторможение круговых эксцентриков обеспечивается отношении его наружного диаметра D к эксцентриситету . Это отношение называют характеристикой эксцентрика.

Круглые эксцентрики изготавливают из стали 20Х, цементируют на глубину 0,8…1,2 мм и затем закаливают до твердости HRC 55…60. Размеры круглого эксцентрика необходимо применять с учетом ГОСТ 9061-68 и ГОСТ 12189-66. Стандартные круговые эксцентрики имеют размеры D= 32-80 мм и е = 1,7 – 3,5 мм . К недостаткам круговых эксцентриков следует отнести небольшой линейный ход, непостоянство угла подъема, а, следовательно, и зажимного усилия при закреплении заготовок с большими колебаниями размеров в направлении зажима.

На рисунке 5.21 показан нормализованный эксцентриковый прихват для зажима деталей . Обрабатываемая деталь 3 установлена на неподвижных опорах 2 и прижимается к ним планкой 4. При зажиме детали к рукоятке эксцентрика 6 прикладывается усилие W ,и он проворачивается относительно своей оси, опираясь на пяту 7. Возникающая при этом на оси эксцентрика сила Р передается через планку 4 к детали.

Рисунок 5.21 – Нормализованный эксцентриковый прихват

В зависимости от размеров планки (l 1 и l 2 ) получим зажимное усилие Q . Планка 4 прижимается к головке 5 винта 1 пружиной. Эксцентрик 6 с планкой 4 после разжима детали перемещается вправо.

Криволинейные кулачки , в отличие от круговых эксцентриков, ха­рактеризуются постоянством угла подъёма, что обеспечивает одинаковые самотормо­зящие свойства при любом угле поворота кулачка .

Рабочая поверхность таких кулачков выполняется в виде ло­гарифмической или архимедовой спирали.

При рабочем профиле в виде логарифмической спирали радиус-вектор кулачка ( р ) определяется зависимостью

р = Се а G

где С- постоянная величина; е - основание натуральных логарифмов; а - коэффициент пропорциональности; G - полярный угол.

Если используется профиль, выполненный по архимедовой спирали, то

р=аG .

Если первое уравнение представить в логарифмическом виде, то оно, как и второе уравнение, в декартовых координатах будет представлять прямую линию . Поэтому построение кулачков с рабочими поверхностями в виде логарифмической или Архимедовой спирали можно выполнить с достаточной точностью просто, если значения р, взятые по графику в де­картовых координатах, отложить от центра окружности в полярных коор­динатах. При этом диаметр окружности подбирают в зависимости от тре­бующейся величины хода эксцентрика (h ) (Рис. 5.22).

Рисунок 5.22 – Профиль криволинейного кулачка

Эти эксцентрики изготавливают из сталей 35 и 45. Наружные рабочие поверхности подвергают термообработке до твердости HRC 55…60. Основные размеры криволинейных эксцентриков нормализованы.


Доброго времени суток любителям самодельных приспособлений. Когда под рукой нет тисков или же их просто нет в наличии, то самым простым решением будет собрать что-то похожее самому, так как особых навыков и труднодоступных материалов для сборки зажима не требуется. В этой статье я расскажу, как сделать деревянный зажим.

Для того, чтобы собрать свой зажим необходимо найти крепкую породу дерева, чтобы оно выдерживало большие нагрузки. В данном случае хорошо подойдет дубовая дощечка.

Для того, чтобы приступить к этапу изготовления необходимо:
*Болт, размер которого лучше взять в районе 12-14мм.
*Гайку под болт.
*Бруски из дерева дуба.
*Часть профиля из дерева сечением 15мм.
*Столярный клей или паркетный.
*Эпоксидка.
*Лак, можно заменить на морилку.
*Металлический стержень 3 мм.
*Сверло мелкого диаметра.
*Стамеска или зубило.
*Ножовка по-дереву.
*Молоток.
*Электродрель.
*Наждачка средней зернистости.
*Тиски и струбцина.

Первый шаг. В зависимости от ваших запросов размер зажима можно сделать разный, в данном случае автор выпиливает брусочки размером 3,5 х 3 х 3,5 см - одну штуку и 1,8 х 3 х 7,5 см - две штуки.


После этого зажимаем брусок длиной 75мм в тисках и сверлим отверстие с помощью дрели, отступив от края 1-2см.


Далее сопоставьте сделанное только что отверстие с отверстием в гайке и обведите контур карандашом. После разметки, вооружившись стамеской и молотком, вырежьте шестигранный потай для гайки.



Второй шаг. Для закрепления гайки в бруске необходимо промазать выточенный паз эпоксидной смолой внутри и погрузить туда ту самую гайку, немного утопив ее в бруске.



Как правило полное высыхание эпоксидной смолы достигается по истечению 24 часов, после чего можно переходить к следующему этапу сборки.
Третий шаг. Болт, который идеально подходит к нашей закрепленной гайке в брусе необходимо доработать, для этого берем дрель и просверливаем отверстие впритык к его шестиугольной шляпке.


После этого переходим к брускам, их необходимо совместить вместе, чтобы по бокам были бруски подлиннее, а между ними брусок покороче. Перед тем, как три бруса будут зажаты между собой, нужно просверлить отверстия в месте крепежа тонким сверлом, чтобы заготовка не раскололась, ибо такой расклад нам не подходит.


С помощью шуруповерта закручиваем шурупы в готовые места сверления, предварительно промазав стыки между собой клеем.



Закрепляем струбциной почти готовый зажимной механизм и ждем высыхания клея. Для удобного использования зажима необходим рычаг, при помощи которого вы сможете зажимать ваши заготовки, им как раз таки послужит металлический стержень и распиленная на две части круглопрофильная деревяшка сечением 15 мм, в обеих нужно просверлить отверстие для стержня и посадить это все на клей.




Завершающий этап. Для полного окончания сборки понадобиться лак или морилка, шлифуем наш самодельный зажим, а потом покрываем лаком в несколько слоев.


На этом изготовление зажима своими руками готово и в рабочее состояние он перейдет, когда лак высохнет полностью, после этого можно с полной уверенностью работать с данным приспособлением.

Читайте также: